This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of the vertex in a loop-free hypergraph with one vertex is 0. (Contributed by AV, 2-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdlfuhgr1v.v | |- V = ( Vtx ` G ) |
|
| vtxdlfuhgr1v.i | |- I = ( iEdg ` G ) |
||
| vtxdlfuhgr1v.e | |- E = { x e. ~P V | 2 <_ ( # ` x ) } |
||
| Assertion | vtxdlfuhgr1v | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( U e. V -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdlfuhgr1v.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdlfuhgr1v.i | |- I = ( iEdg ` G ) |
|
| 3 | vtxdlfuhgr1v.e | |- E = { x e. ~P V | 2 <_ ( # ` x ) } |
|
| 4 | simpl1 | |- ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> G e. UHGraph ) |
|
| 5 | simpr | |- ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> U e. V ) |
|
| 6 | 1 2 3 | lfuhgr1v0e | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( Edg ` G ) = (/) ) |
| 7 | 6 | adantr | |- ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> ( Edg ` G ) = (/) ) |
| 8 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 9 | 1 8 | vtxduhgr0e | |- ( ( G e. UHGraph /\ U e. V /\ ( Edg ` G ) = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |
| 10 | 4 5 7 9 | syl3anc | |- ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |
| 11 | 10 | ex | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( U e. V -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |