This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vtxdgop | |- ( G e. W -> ( VtxDeg ` G ) = ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | |- <. ( Vtx ` G ) , ( iEdg ` G ) >. e. _V |
|
| 2 | fvex | |- ( Vtx ` G ) e. _V |
|
| 3 | fvex | |- ( iEdg ` G ) e. _V |
|
| 4 | 2 3 | opvtxfvi | |- ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( Vtx ` G ) |
| 5 | 4 | eqcomi | |- ( Vtx ` G ) = ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
| 6 | 2 3 | opiedgfvi | |- ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( iEdg ` G ) |
| 7 | 6 | eqcomi | |- ( iEdg ` G ) = ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
| 8 | eqid | |- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
|
| 9 | 5 7 8 | vtxdgfval | |- ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. _V -> ( VtxDeg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( u e. ( Vtx ` G ) |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 10 | 1 9 | mp1i | |- ( G e. W -> ( VtxDeg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( u e. ( Vtx ` G ) |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 11 | df-ov | |- ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) = ( VtxDeg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
|
| 12 | 11 | a1i | |- ( G e. W -> ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) = ( VtxDeg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) ) |
| 13 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 14 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 15 | 13 14 8 | vtxdgfval | |- ( G e. W -> ( VtxDeg ` G ) = ( u e. ( Vtx ` G ) |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 16 | 10 12 15 | 3eqtr4rd | |- ( G e. W -> ( VtxDeg ` G ) = ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ) |