This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of vtocl2gaf as of 31-May-2025. (Contributed by NM, 10-Aug-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl2gaf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| vtocl2gaf.b | ⊢ Ⅎ 𝑦 𝐴 | ||
| vtocl2gaf.c | ⊢ Ⅎ 𝑦 𝐵 | ||
| vtocl2gaf.1 | ⊢ Ⅎ 𝑥 𝜓 | ||
| vtocl2gaf.2 | ⊢ Ⅎ 𝑦 𝜒 | ||
| vtocl2gaf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| vtocl2gaf.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl2gaf.5 | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜑 ) | ||
| Assertion | vtocl2gafOLD | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2gaf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | vtocl2gaf.b | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | vtocl2gaf.c | ⊢ Ⅎ 𝑦 𝐵 | |
| 4 | vtocl2gaf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 5 | vtocl2gaf.2 | ⊢ Ⅎ 𝑦 𝜒 | |
| 6 | vtocl2gaf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 7 | vtocl2gaf.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 8 | vtocl2gaf.5 | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜑 ) | |
| 9 | 1 | nfel1 | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝐶 |
| 10 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐷 | |
| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) |
| 12 | 11 4 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜓 ) |
| 13 | 2 | nfel1 | ⊢ Ⅎ 𝑦 𝐴 ∈ 𝐶 |
| 14 | 3 | nfel1 | ⊢ Ⅎ 𝑦 𝐵 ∈ 𝐷 |
| 15 | 13 14 | nfan | ⊢ Ⅎ 𝑦 ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) |
| 16 | 15 5 | nfim | ⊢ Ⅎ 𝑦 ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) |
| 17 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) | |
| 18 | 17 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 19 | 18 6 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜓 ) ) ) |
| 20 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷 ) ) | |
| 21 | 20 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) ) |
| 22 | 21 7 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜓 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) ) ) |
| 23 | 1 2 3 12 16 19 22 8 | vtocl2gf | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) ) |
| 24 | 23 | pm2.43i | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) |