This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl2gf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| vtocl2gf.2 | ⊢ Ⅎ 𝑦 𝐴 | ||
| vtocl2gf.3 | ⊢ Ⅎ 𝑦 𝐵 | ||
| vtocl2gf.4 | ⊢ Ⅎ 𝑥 𝜓 | ||
| vtocl2gf.5 | ⊢ Ⅎ 𝑦 𝜒 | ||
| vtocl2gf.6 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| vtocl2gf.7 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl2gf.8 | ⊢ 𝜑 | ||
| Assertion | vtocl2gf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2gf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | vtocl2gf.2 | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | vtocl2gf.3 | ⊢ Ⅎ 𝑦 𝐵 | |
| 4 | vtocl2gf.4 | ⊢ Ⅎ 𝑥 𝜓 | |
| 5 | vtocl2gf.5 | ⊢ Ⅎ 𝑦 𝜒 | |
| 6 | vtocl2gf.6 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 7 | vtocl2gf.7 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 8 | vtocl2gf.8 | ⊢ 𝜑 | |
| 9 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 10 | 2 | nfel1 | ⊢ Ⅎ 𝑦 𝐴 ∈ V |
| 11 | 10 5 | nfim | ⊢ Ⅎ 𝑦 ( 𝐴 ∈ V → 𝜒 ) |
| 12 | 7 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ V → 𝜓 ) ↔ ( 𝐴 ∈ V → 𝜒 ) ) ) |
| 13 | 1 4 6 8 | vtoclgf | ⊢ ( 𝐴 ∈ V → 𝜓 ) |
| 14 | 3 11 12 13 | vtoclgf | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 ∈ V → 𝜒 ) ) |
| 15 | 9 14 | mpan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜒 ) |