This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of vtocl2gaf as of 31-May-2025. (Contributed by NM, 10-Aug-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl2gaf.a | |- F/_ x A |
|
| vtocl2gaf.b | |- F/_ y A |
||
| vtocl2gaf.c | |- F/_ y B |
||
| vtocl2gaf.1 | |- F/ x ps |
||
| vtocl2gaf.2 | |- F/ y ch |
||
| vtocl2gaf.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
| vtocl2gaf.4 | |- ( y = B -> ( ps <-> ch ) ) |
||
| vtocl2gaf.5 | |- ( ( x e. C /\ y e. D ) -> ph ) |
||
| Assertion | vtocl2gafOLD | |- ( ( A e. C /\ B e. D ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2gaf.a | |- F/_ x A |
|
| 2 | vtocl2gaf.b | |- F/_ y A |
|
| 3 | vtocl2gaf.c | |- F/_ y B |
|
| 4 | vtocl2gaf.1 | |- F/ x ps |
|
| 5 | vtocl2gaf.2 | |- F/ y ch |
|
| 6 | vtocl2gaf.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 7 | vtocl2gaf.4 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 8 | vtocl2gaf.5 | |- ( ( x e. C /\ y e. D ) -> ph ) |
|
| 9 | 1 | nfel1 | |- F/ x A e. C |
| 10 | nfv | |- F/ x y e. D |
|
| 11 | 9 10 | nfan | |- F/ x ( A e. C /\ y e. D ) |
| 12 | 11 4 | nfim | |- F/ x ( ( A e. C /\ y e. D ) -> ps ) |
| 13 | 2 | nfel1 | |- F/ y A e. C |
| 14 | 3 | nfel1 | |- F/ y B e. D |
| 15 | 13 14 | nfan | |- F/ y ( A e. C /\ B e. D ) |
| 16 | 15 5 | nfim | |- F/ y ( ( A e. C /\ B e. D ) -> ch ) |
| 17 | eleq1 | |- ( x = A -> ( x e. C <-> A e. C ) ) |
|
| 18 | 17 | anbi1d | |- ( x = A -> ( ( x e. C /\ y e. D ) <-> ( A e. C /\ y e. D ) ) ) |
| 19 | 18 6 | imbi12d | |- ( x = A -> ( ( ( x e. C /\ y e. D ) -> ph ) <-> ( ( A e. C /\ y e. D ) -> ps ) ) ) |
| 20 | eleq1 | |- ( y = B -> ( y e. D <-> B e. D ) ) |
|
| 21 | 20 | anbi2d | |- ( y = B -> ( ( A e. C /\ y e. D ) <-> ( A e. C /\ B e. D ) ) ) |
| 22 | 21 7 | imbi12d | |- ( y = B -> ( ( ( A e. C /\ y e. D ) -> ps ) <-> ( ( A e. C /\ B e. D ) -> ch ) ) ) |
| 23 | 1 2 3 12 16 19 22 8 | vtocl2gf | |- ( ( A e. C /\ B e. D ) -> ( ( A e. C /\ B e. D ) -> ch ) ) |
| 24 | 23 | pm2.43i | |- ( ( A e. C /\ B e. D ) -> ch ) |