This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The variable X is a member of the power series algebra R [ [ X ] ] . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vr1val.1 | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| vr1cl2.2 | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | ||
| vr1cl2.3 | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | vr1cl2 | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1val.1 | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 2 | vr1cl2.2 | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | |
| 3 | vr1cl2.3 | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | 1 | vr1val | ⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 5 | eqid | ⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) | |
| 6 | eqid | ⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) | |
| 8 | 1on | ⊢ 1o ∈ On | |
| 9 | 8 | a1i | ⊢ ( 𝑅 ∈ Ring → 1o ∈ On ) |
| 10 | id | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) | |
| 11 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 12 | 11 | a1i | ⊢ ( 𝑅 ∈ Ring → ∅ ∈ 1o ) |
| 13 | 5 6 7 9 10 12 | mvrcl2 | ⊢ ( 𝑅 ∈ Ring → ( ( 1o mVar 𝑅 ) ‘ ∅ ) ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 14 | 2 | psr1val | ⊢ 𝑆 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |
| 15 | 0ss | ⊢ ∅ ⊆ ( 1o × 1o ) | |
| 16 | 15 | a1i | ⊢ ( 𝑅 ∈ Ring → ∅ ⊆ ( 1o × 1o ) ) |
| 17 | 5 14 16 | opsrbas | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ 𝑆 ) ) |
| 18 | 17 3 | eqtr4di | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = 𝐵 ) |
| 19 | 13 18 | eleqtrd | ⊢ ( 𝑅 ∈ Ring → ( ( 1o mVar 𝑅 ) ‘ ∅ ) ∈ 𝐵 ) |
| 20 | 4 19 | eqeltrid | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |