This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The variable X is a member of the power series algebra R [ [ X ] ] . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vr1val.1 | |- X = ( var1 ` R ) |
|
| vr1cl2.2 | |- S = ( PwSer1 ` R ) |
||
| vr1cl2.3 | |- B = ( Base ` S ) |
||
| Assertion | vr1cl2 | |- ( R e. Ring -> X e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1val.1 | |- X = ( var1 ` R ) |
|
| 2 | vr1cl2.2 | |- S = ( PwSer1 ` R ) |
|
| 3 | vr1cl2.3 | |- B = ( Base ` S ) |
|
| 4 | 1 | vr1val | |- X = ( ( 1o mVar R ) ` (/) ) |
| 5 | eqid | |- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
|
| 6 | eqid | |- ( 1o mVar R ) = ( 1o mVar R ) |
|
| 7 | eqid | |- ( Base ` ( 1o mPwSer R ) ) = ( Base ` ( 1o mPwSer R ) ) |
|
| 8 | 1on | |- 1o e. On |
|
| 9 | 8 | a1i | |- ( R e. Ring -> 1o e. On ) |
| 10 | id | |- ( R e. Ring -> R e. Ring ) |
|
| 11 | 0lt1o | |- (/) e. 1o |
|
| 12 | 11 | a1i | |- ( R e. Ring -> (/) e. 1o ) |
| 13 | 5 6 7 9 10 12 | mvrcl2 | |- ( R e. Ring -> ( ( 1o mVar R ) ` (/) ) e. ( Base ` ( 1o mPwSer R ) ) ) |
| 14 | 2 | psr1val | |- S = ( ( 1o ordPwSer R ) ` (/) ) |
| 15 | 0ss | |- (/) C_ ( 1o X. 1o ) |
|
| 16 | 15 | a1i | |- ( R e. Ring -> (/) C_ ( 1o X. 1o ) ) |
| 17 | 5 14 16 | opsrbas | |- ( R e. Ring -> ( Base ` ( 1o mPwSer R ) ) = ( Base ` S ) ) |
| 18 | 17 3 | eqtr4di | |- ( R e. Ring -> ( Base ` ( 1o mPwSer R ) ) = B ) |
| 19 | 13 18 | eleqtrd | |- ( R e. Ring -> ( ( 1o mVar R ) ` (/) ) e. B ) |
| 20 | 4 19 | eqeltrid | |- ( R e. Ring -> X e. B ) |