This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psr1val.1 | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | |
| Assertion | psr1val | ⊢ 𝑆 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psr1val.1 | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | |
| 2 | oveq2 | ⊢ ( 𝑟 = 𝑅 → ( 1o ordPwSer 𝑟 ) = ( 1o ordPwSer 𝑅 ) ) | |
| 3 | 2 | fveq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 1o ordPwSer 𝑟 ) ‘ ∅ ) = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) ) |
| 4 | df-psr1 | ⊢ PwSer1 = ( 𝑟 ∈ V ↦ ( ( 1o ordPwSer 𝑟 ) ‘ ∅ ) ) | |
| 5 | fvex | ⊢ ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) ∈ V | |
| 6 | 3 4 5 | fvmpt | ⊢ ( 𝑅 ∈ V → ( PwSer1 ‘ 𝑅 ) = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) ) |
| 7 | 0fv | ⊢ ( ∅ ‘ ∅ ) = ∅ | |
| 8 | 7 | eqcomi | ⊢ ∅ = ( ∅ ‘ ∅ ) |
| 9 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( PwSer1 ‘ 𝑅 ) = ∅ ) | |
| 10 | reldmopsr | ⊢ Rel dom ordPwSer | |
| 11 | 10 | ovprc2 | ⊢ ( ¬ 𝑅 ∈ V → ( 1o ordPwSer 𝑅 ) = ∅ ) |
| 12 | 11 | fveq1d | ⊢ ( ¬ 𝑅 ∈ V → ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) = ( ∅ ‘ ∅ ) ) |
| 13 | 8 9 12 | 3eqtr4a | ⊢ ( ¬ 𝑅 ∈ V → ( PwSer1 ‘ 𝑅 ) = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) ) |
| 14 | 6 13 | pm2.61i | ⊢ ( PwSer1 ‘ 𝑅 ) = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |
| 15 | 1 14 | eqtri | ⊢ 𝑆 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |