This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zletr | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿 ) → 𝐽 ≤ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝐽 ∈ ℤ → 𝐽 ∈ ℝ ) | |
| 2 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 3 | zre | ⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) | |
| 4 | letr | ⊢ ( ( 𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( 𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿 ) → 𝐽 ≤ 𝐿 ) ) | |
| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿 ) → 𝐽 ≤ 𝐿 ) ) |