This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014) (Revised by Mario Carneiro, 21-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uzsupss.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | uzsupss | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzsupss.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | simpl1 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → 𝑀 ∈ ℤ ) | |
| 3 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 | 4 1 | eleqtrrdi | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → 𝑀 ∈ 𝑍 ) |
| 6 | ral0 | ⊢ ∀ 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦 | |
| 7 | simpr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) | |
| 8 | 7 | raleqdv | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ↔ ∀ 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦 ) ) |
| 9 | 6 8 | mpbiri | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → ∀ 𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ) |
| 10 | eluzle | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑦 ) | |
| 11 | eluzel2 | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 12 | eluzelz | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑦 ∈ ℤ ) | |
| 13 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 14 | zre | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) | |
| 15 | lenlt | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑀 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑀 ) ) | |
| 16 | 13 14 15 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑀 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑀 ) ) |
| 17 | 11 12 16 | syl2anc | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑀 ) ) |
| 18 | 10 17 | mpbid | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ¬ 𝑦 < 𝑀 ) |
| 19 | 18 1 | eleq2s | ⊢ ( 𝑦 ∈ 𝑍 → ¬ 𝑦 < 𝑀 ) |
| 20 | 19 | pm2.21d | ⊢ ( 𝑦 ∈ 𝑍 → ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 21 | 20 | rgen | ⊢ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
| 22 | 21 | a1i | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 23 | breq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 < 𝑦 ↔ 𝑀 < 𝑦 ) ) | |
| 24 | 23 | notbid | ⊢ ( 𝑥 = 𝑀 → ( ¬ 𝑥 < 𝑦 ↔ ¬ 𝑀 < 𝑦 ) ) |
| 25 | 24 | ralbidv | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ) ) |
| 26 | breq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝑦 < 𝑥 ↔ 𝑦 < 𝑀 ) ) | |
| 27 | 26 | imbi1d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 28 | 27 | ralbidv | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 29 | 25 28 | anbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
| 30 | 29 | rspcev | ⊢ ( ( 𝑀 ∈ 𝑍 ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 31 | 5 9 22 30 | syl12anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 32 | simpl2 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ 𝑍 ) | |
| 33 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 34 | 1 33 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 35 | 32 34 | sstrdi | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ℤ ) |
| 36 | simpr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 37 | simpl3 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| 38 | zsupss | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) | |
| 39 | 35 36 37 38 | syl3anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 40 | ssrexv | ⊢ ( 𝐴 ⊆ 𝑍 → ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) | |
| 41 | 32 39 40 | sylc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 42 | 31 41 | pm2.61dane | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |