This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper set of integers that starts at an integer M , using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s when j and k must be distinct in [. ( k + 1 ) / j ]. ph . (Contributed by NM, 16-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind4s2.1 | ⊢ ( 𝑀 ∈ ℤ → [ 𝑀 / 𝑗 ] 𝜑 ) | |
| uzind4s2.2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑘 / 𝑗 ] 𝜑 → [ ( 𝑘 + 1 ) / 𝑗 ] 𝜑 ) ) | ||
| Assertion | uzind4s2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → [ 𝑁 / 𝑗 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind4s2.1 | ⊢ ( 𝑀 ∈ ℤ → [ 𝑀 / 𝑗 ] 𝜑 ) | |
| 2 | uzind4s2.2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑘 / 𝑗 ] 𝜑 → [ ( 𝑘 + 1 ) / 𝑗 ] 𝜑 ) ) | |
| 3 | dfsbcq | ⊢ ( 𝑚 = 𝑀 → ( [ 𝑚 / 𝑗 ] 𝜑 ↔ [ 𝑀 / 𝑗 ] 𝜑 ) ) | |
| 4 | dfsbcq | ⊢ ( 𝑚 = 𝑛 → ( [ 𝑚 / 𝑗 ] 𝜑 ↔ [ 𝑛 / 𝑗 ] 𝜑 ) ) | |
| 5 | dfsbcq | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( [ 𝑚 / 𝑗 ] 𝜑 ↔ [ ( 𝑛 + 1 ) / 𝑗 ] 𝜑 ) ) | |
| 6 | dfsbcq | ⊢ ( 𝑚 = 𝑁 → ( [ 𝑚 / 𝑗 ] 𝜑 ↔ [ 𝑁 / 𝑗 ] 𝜑 ) ) | |
| 7 | dfsbcq | ⊢ ( 𝑘 = 𝑛 → ( [ 𝑘 / 𝑗 ] 𝜑 ↔ [ 𝑛 / 𝑗 ] 𝜑 ) ) | |
| 8 | oveq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 + 1 ) = ( 𝑛 + 1 ) ) | |
| 9 | 8 | sbceq1d | ⊢ ( 𝑘 = 𝑛 → ( [ ( 𝑘 + 1 ) / 𝑗 ] 𝜑 ↔ [ ( 𝑛 + 1 ) / 𝑗 ] 𝜑 ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( 𝑘 = 𝑛 → ( ( [ 𝑘 / 𝑗 ] 𝜑 → [ ( 𝑘 + 1 ) / 𝑗 ] 𝜑 ) ↔ ( [ 𝑛 / 𝑗 ] 𝜑 → [ ( 𝑛 + 1 ) / 𝑗 ] 𝜑 ) ) ) |
| 11 | 10 2 | vtoclga | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑛 / 𝑗 ] 𝜑 → [ ( 𝑛 + 1 ) / 𝑗 ] 𝜑 ) ) |
| 12 | 3 4 5 6 1 11 | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → [ 𝑁 / 𝑗 ] 𝜑 ) |