This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper set of integers that starts at an integer M , using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind4s.1 | ⊢ ( 𝑀 ∈ ℤ → [ 𝑀 / 𝑘 ] 𝜑 ) | |
| uzind4s.2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → [ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) ) | ||
| Assertion | uzind4s | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → [ 𝑁 / 𝑘 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind4s.1 | ⊢ ( 𝑀 ∈ ℤ → [ 𝑀 / 𝑘 ] 𝜑 ) | |
| 2 | uzind4s.2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → [ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) ) | |
| 3 | dfsbcq2 | ⊢ ( 𝑗 = 𝑀 → ( [ 𝑗 / 𝑘 ] 𝜑 ↔ [ 𝑀 / 𝑘 ] 𝜑 ) ) | |
| 4 | sbequ | ⊢ ( 𝑗 = 𝑚 → ( [ 𝑗 / 𝑘 ] 𝜑 ↔ [ 𝑚 / 𝑘 ] 𝜑 ) ) | |
| 5 | dfsbcq2 | ⊢ ( 𝑗 = ( 𝑚 + 1 ) → ( [ 𝑗 / 𝑘 ] 𝜑 ↔ [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) | |
| 6 | dfsbcq2 | ⊢ ( 𝑗 = 𝑁 → ( [ 𝑗 / 𝑘 ] 𝜑 ↔ [ 𝑁 / 𝑘 ] 𝜑 ) ) | |
| 7 | nfv | ⊢ Ⅎ 𝑘 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) | |
| 8 | nfs1v | ⊢ Ⅎ 𝑘 [ 𝑚 / 𝑘 ] 𝜑 | |
| 9 | nfsbc1v | ⊢ Ⅎ 𝑘 [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 | |
| 10 | 8 9 | nfim | ⊢ Ⅎ 𝑘 ( [ 𝑚 / 𝑘 ] 𝜑 → [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) |
| 11 | 7 10 | nfim | ⊢ Ⅎ 𝑘 ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑚 / 𝑘 ] 𝜑 → [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) |
| 12 | eleq1w | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) | |
| 13 | sbequ12 | ⊢ ( 𝑘 = 𝑚 → ( 𝜑 ↔ [ 𝑚 / 𝑘 ] 𝜑 ) ) | |
| 14 | oveq1 | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 + 1 ) = ( 𝑚 + 1 ) ) | |
| 15 | 14 | sbceq1d | ⊢ ( 𝑘 = 𝑚 → ( [ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ↔ [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝜑 → [ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) ↔ ( [ 𝑚 / 𝑘 ] 𝜑 → [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) ) |
| 17 | 12 16 | imbi12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → [ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑚 / 𝑘 ] 𝜑 → [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) ) ) |
| 18 | 11 17 2 | chvarfv | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑚 / 𝑘 ] 𝜑 → [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) |
| 19 | 3 4 5 6 1 18 | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → [ 𝑁 / 𝑘 ] 𝜑 ) |