This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper set of integers that starts at an integer M , using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s when j and k must be distinct in [. ( k + 1 ) / j ]. ph . (Contributed by NM, 16-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind4s2.1 | |- ( M e. ZZ -> [. M / j ]. ph ) |
|
| uzind4s2.2 | |- ( k e. ( ZZ>= ` M ) -> ( [. k / j ]. ph -> [. ( k + 1 ) / j ]. ph ) ) |
||
| Assertion | uzind4s2 | |- ( N e. ( ZZ>= ` M ) -> [. N / j ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind4s2.1 | |- ( M e. ZZ -> [. M / j ]. ph ) |
|
| 2 | uzind4s2.2 | |- ( k e. ( ZZ>= ` M ) -> ( [. k / j ]. ph -> [. ( k + 1 ) / j ]. ph ) ) |
|
| 3 | dfsbcq | |- ( m = M -> ( [. m / j ]. ph <-> [. M / j ]. ph ) ) |
|
| 4 | dfsbcq | |- ( m = n -> ( [. m / j ]. ph <-> [. n / j ]. ph ) ) |
|
| 5 | dfsbcq | |- ( m = ( n + 1 ) -> ( [. m / j ]. ph <-> [. ( n + 1 ) / j ]. ph ) ) |
|
| 6 | dfsbcq | |- ( m = N -> ( [. m / j ]. ph <-> [. N / j ]. ph ) ) |
|
| 7 | dfsbcq | |- ( k = n -> ( [. k / j ]. ph <-> [. n / j ]. ph ) ) |
|
| 8 | oveq1 | |- ( k = n -> ( k + 1 ) = ( n + 1 ) ) |
|
| 9 | 8 | sbceq1d | |- ( k = n -> ( [. ( k + 1 ) / j ]. ph <-> [. ( n + 1 ) / j ]. ph ) ) |
| 10 | 7 9 | imbi12d | |- ( k = n -> ( ( [. k / j ]. ph -> [. ( k + 1 ) / j ]. ph ) <-> ( [. n / j ]. ph -> [. ( n + 1 ) / j ]. ph ) ) ) |
| 11 | 10 2 | vtoclga | |- ( n e. ( ZZ>= ` M ) -> ( [. n / j ]. ph -> [. ( n + 1 ) / j ]. ph ) ) |
| 12 | 3 4 5 6 1 11 | uzind4 | |- ( N e. ( ZZ>= ` M ) -> [. N / j ]. ph ) |