This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper set of integers that starts at an integer M , using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind4s.1 | |- ( M e. ZZ -> [. M / k ]. ph ) |
|
| uzind4s.2 | |- ( k e. ( ZZ>= ` M ) -> ( ph -> [. ( k + 1 ) / k ]. ph ) ) |
||
| Assertion | uzind4s | |- ( N e. ( ZZ>= ` M ) -> [. N / k ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind4s.1 | |- ( M e. ZZ -> [. M / k ]. ph ) |
|
| 2 | uzind4s.2 | |- ( k e. ( ZZ>= ` M ) -> ( ph -> [. ( k + 1 ) / k ]. ph ) ) |
|
| 3 | dfsbcq2 | |- ( j = M -> ( [ j / k ] ph <-> [. M / k ]. ph ) ) |
|
| 4 | sbequ | |- ( j = m -> ( [ j / k ] ph <-> [ m / k ] ph ) ) |
|
| 5 | dfsbcq2 | |- ( j = ( m + 1 ) -> ( [ j / k ] ph <-> [. ( m + 1 ) / k ]. ph ) ) |
|
| 6 | dfsbcq2 | |- ( j = N -> ( [ j / k ] ph <-> [. N / k ]. ph ) ) |
|
| 7 | nfv | |- F/ k m e. ( ZZ>= ` M ) |
|
| 8 | nfs1v | |- F/ k [ m / k ] ph |
|
| 9 | nfsbc1v | |- F/ k [. ( m + 1 ) / k ]. ph |
|
| 10 | 8 9 | nfim | |- F/ k ( [ m / k ] ph -> [. ( m + 1 ) / k ]. ph ) |
| 11 | 7 10 | nfim | |- F/ k ( m e. ( ZZ>= ` M ) -> ( [ m / k ] ph -> [. ( m + 1 ) / k ]. ph ) ) |
| 12 | eleq1w | |- ( k = m -> ( k e. ( ZZ>= ` M ) <-> m e. ( ZZ>= ` M ) ) ) |
|
| 13 | sbequ12 | |- ( k = m -> ( ph <-> [ m / k ] ph ) ) |
|
| 14 | oveq1 | |- ( k = m -> ( k + 1 ) = ( m + 1 ) ) |
|
| 15 | 14 | sbceq1d | |- ( k = m -> ( [. ( k + 1 ) / k ]. ph <-> [. ( m + 1 ) / k ]. ph ) ) |
| 16 | 13 15 | imbi12d | |- ( k = m -> ( ( ph -> [. ( k + 1 ) / k ]. ph ) <-> ( [ m / k ] ph -> [. ( m + 1 ) / k ]. ph ) ) ) |
| 17 | 12 16 | imbi12d | |- ( k = m -> ( ( k e. ( ZZ>= ` M ) -> ( ph -> [. ( k + 1 ) / k ]. ph ) ) <-> ( m e. ( ZZ>= ` M ) -> ( [ m / k ] ph -> [. ( m + 1 ) / k ]. ph ) ) ) ) |
| 18 | 11 17 2 | chvarfv | |- ( m e. ( ZZ>= ` M ) -> ( [ m / k ] ph -> [. ( m + 1 ) / k ]. ph ) ) |
| 19 | 3 4 5 6 1 18 | uzind4 | |- ( N e. ( ZZ>= ` M ) -> [. N / k ]. ph ) |