This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uzinf.1 | |- Z = ( ZZ>= ` M ) |
|
| Assertion | uzenom | |- ( M e. ZZ -> Z ~~ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzinf.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | fveq2 | |- ( M = if ( M e. ZZ , M , 0 ) -> ( ZZ>= ` M ) = ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ) |
|
| 3 | 1 2 | eqtrid | |- ( M = if ( M e. ZZ , M , 0 ) -> Z = ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ) |
| 4 | 3 | breq1d | |- ( M = if ( M e. ZZ , M , 0 ) -> ( Z ~~ _om <-> ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ~~ _om ) ) |
| 5 | omex | |- _om e. _V |
|
| 6 | fvex | |- ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) e. _V |
|
| 7 | 0z | |- 0 e. ZZ |
|
| 8 | 7 | elimel | |- if ( M e. ZZ , M , 0 ) e. ZZ |
| 9 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( M e. ZZ , M , 0 ) ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( M e. ZZ , M , 0 ) ) |` _om ) |
|
| 10 | 8 9 | om2uzf1oi | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( M e. ZZ , M , 0 ) ) |` _om ) : _om -1-1-onto-> ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) |
| 11 | f1oen2g | |- ( ( _om e. _V /\ ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) e. _V /\ ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( M e. ZZ , M , 0 ) ) |` _om ) : _om -1-1-onto-> ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ) -> _om ~~ ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ) |
|
| 12 | 5 6 10 11 | mp3an | |- _om ~~ ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) |
| 13 | 12 | ensymi | |- ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ~~ _om |
| 14 | 4 13 | dedth | |- ( M e. ZZ -> Z ~~ _om ) |