This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustref | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 𝑉 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ 𝐴 = 𝐴 | |
| 2 | resieq | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴 ↔ 𝐴 = 𝐴 ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ( I ↾ 𝑋 ) 𝐴 ) |
| 4 | 3 | anidms | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ( I ↾ 𝑋 ) 𝐴 ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ( I ↾ 𝑋 ) 𝐴 ) |
| 6 | ustdiag | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑉 ) | |
| 7 | 6 | ssbrd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴 → 𝐴 𝑉 𝐴 ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴 → 𝐴 𝑉 𝐴 ) ) |
| 9 | 5 8 | mpd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 𝑉 𝐴 ) |