This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fdmeu | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑋 ) = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feu | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐵 〈 𝑋 , 𝑦 〉 ∈ 𝐹 ) | |
| 2 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 3 | 2 | anim1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
| 5 | fnopfvb | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑦 ↔ 〈 𝑋 , 𝑦 〉 ∈ 𝐹 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑦 ↔ 〈 𝑋 , 𝑦 〉 ∈ 𝐹 ) ) |
| 7 | 6 | reubidva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ∃! 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑋 ) = 𝑦 ↔ ∃! 𝑦 ∈ 𝐵 〈 𝑋 , 𝑦 〉 ∈ 𝐹 ) ) |
| 8 | 1 7 | mpbird | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑋 ) = 𝑦 ) |