This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple pseudograph, for each edge there is exactly one indexed edge. (Contributed by AV, 20-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgredgiedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| uspgredgiedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | uspgredgiedg | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐾 ∈ 𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 𝐾 = ( 𝐼 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredgiedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | uspgredgiedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | 2 | uspgrf1oedg | ⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 4 | f1oeq3 | ⊢ ( 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ↔ 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) ) | |
| 5 | 1 4 | ax-mp | ⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ↔ 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 6 | 3 5 | sylibr | ⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ) |
| 7 | f1ofveu | ⊢ ( ( 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ∧ 𝐾 ∈ 𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = 𝐾 ) | |
| 8 | 6 7 | sylan | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐾 ∈ 𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = 𝐾 ) |
| 9 | eqcom | ⊢ ( 𝐾 = ( 𝐼 ‘ 𝑥 ) ↔ ( 𝐼 ‘ 𝑥 ) = 𝐾 ) | |
| 10 | 9 | reubii | ⊢ ( ∃! 𝑥 ∈ dom 𝐼 𝐾 = ( 𝐼 ‘ 𝑥 ) ↔ ∃! 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = 𝐾 ) |
| 11 | 8 10 | sylibr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐾 ∈ 𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 𝐾 = ( 𝐼 ‘ 𝑥 ) ) |