This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple pseudograph, for each edge there is exactly one indexed edge. (Contributed by AV, 20-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgredgiedg.e | |- E = ( Edg ` G ) |
|
| uspgredgiedg.i | |- I = ( iEdg ` G ) |
||
| Assertion | uspgredgiedg | |- ( ( G e. USPGraph /\ K e. E ) -> E! x e. dom I K = ( I ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredgiedg.e | |- E = ( Edg ` G ) |
|
| 2 | uspgredgiedg.i | |- I = ( iEdg ` G ) |
|
| 3 | 2 | uspgrf1oedg | |- ( G e. USPGraph -> I : dom I -1-1-onto-> ( Edg ` G ) ) |
| 4 | f1oeq3 | |- ( E = ( Edg ` G ) -> ( I : dom I -1-1-onto-> E <-> I : dom I -1-1-onto-> ( Edg ` G ) ) ) |
|
| 5 | 1 4 | ax-mp | |- ( I : dom I -1-1-onto-> E <-> I : dom I -1-1-onto-> ( Edg ` G ) ) |
| 6 | 3 5 | sylibr | |- ( G e. USPGraph -> I : dom I -1-1-onto-> E ) |
| 7 | f1ofveu | |- ( ( I : dom I -1-1-onto-> E /\ K e. E ) -> E! x e. dom I ( I ` x ) = K ) |
|
| 8 | 6 7 | sylan | |- ( ( G e. USPGraph /\ K e. E ) -> E! x e. dom I ( I ` x ) = K ) |
| 9 | eqcom | |- ( K = ( I ` x ) <-> ( I ` x ) = K ) |
|
| 10 | 9 | reubii | |- ( E! x e. dom I K = ( I ` x ) <-> E! x e. dom I ( I ` x ) = K ) |
| 11 | 8 10 | sylibr | |- ( ( G e. USPGraph /\ K e. E ) -> E! x e. dom I K = ( I ` x ) ) |