This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring ( ph -> G Struct X ) , it would be sufficient to require ( ph -> Fun ( G \ { (/) } ) ) and ( ph -> G e. _V ) . (Contributed by AV, 13-Nov-2021) (Proof shortened by AV, 16-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrstrrepe.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | |
| usgrstrrepe.i | ⊢ 𝐼 = ( .ef ‘ ndx ) | ||
| usgrstrrepe.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | ||
| usgrstrrepe.b | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝐺 ) | ||
| usgrstrrepe.w | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| usgrstrrepe.e | ⊢ ( 𝜑 → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | ||
| Assertion | usgrstrrepe | ⊢ ( 𝜑 → ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrstrrepe.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | |
| 2 | usgrstrrepe.i | ⊢ 𝐼 = ( .ef ‘ ndx ) | |
| 3 | usgrstrrepe.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| 4 | usgrstrrepe.b | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝐺 ) | |
| 5 | usgrstrrepe.w | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 6 | usgrstrrepe.e | ⊢ ( 𝜑 → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 7 | 2 3 4 5 | setsvtx | ⊢ ( 𝜑 → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Base ‘ 𝐺 ) ) |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝜑 → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = 𝑉 ) |
| 9 | 8 | pweqd | ⊢ ( 𝜑 → 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = 𝒫 𝑉 ) |
| 10 | 9 | rabeqdv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 11 | f1eq3 | ⊢ ( { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 13 | 6 12 | mpbird | ⊢ ( 𝜑 → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 14 | 2 3 4 5 | setsiedg | ⊢ ( 𝜑 → ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = 𝐸 ) |
| 15 | 14 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = dom 𝐸 ) |
| 16 | eqidd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 17 | 14 15 16 | f1eq123d | ⊢ ( 𝜑 → ( ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) : dom ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 18 | 13 17 | mpbird | ⊢ ( 𝜑 → ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) : dom ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 19 | ovex | ⊢ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ V | |
| 20 | eqid | ⊢ ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) | |
| 21 | eqid | ⊢ ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) | |
| 22 | 20 21 | isusgrs | ⊢ ( ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ V → ( ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ USGraph ↔ ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) : dom ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 23 | 19 22 | mp1i | ⊢ ( 𝜑 → ( ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ USGraph ↔ ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) : dom ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 24 | 18 23 | mpbird | ⊢ ( 𝜑 → ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ USGraph ) |