This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsvtx.i | ⊢ 𝐼 = ( .ef ‘ ndx ) | |
| setsvtx.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | ||
| setsvtx.b | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝐺 ) | ||
| setsvtx.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| Assertion | setsiedg | ⊢ ( 𝜑 → ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsvtx.i | ⊢ 𝐼 = ( .ef ‘ ndx ) | |
| 2 | setsvtx.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| 3 | setsvtx.b | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝐺 ) | |
| 4 | setsvtx.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 5 | fvexd | ⊢ ( 𝜑 → ( .ef ‘ ndx ) ∈ V ) | |
| 6 | 2 5 4 | setsn0fun | ⊢ ( 𝜑 → Fun ( ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ∖ { ∅ } ) ) |
| 7 | 2 5 4 3 | basprssdmsets | ⊢ ( 𝜑 → { ( Base ‘ ndx ) , ( .ef ‘ ndx ) } ⊆ dom ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ) |
| 8 | funiedgval | ⊢ ( ( Fun ( ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ∖ { ∅ } ) ∧ { ( Base ‘ ndx ) , ( .ef ‘ ndx ) } ⊆ dom ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ) → ( iEdg ‘ ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ) = ( .ef ‘ ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ) ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( 𝜑 → ( iEdg ‘ ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ) = ( .ef ‘ ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ) ) |
| 10 | 1 | opeq1i | ⊢ 〈 𝐼 , 𝐸 〉 = 〈 ( .ef ‘ ndx ) , 𝐸 〉 |
| 11 | 10 | oveq2i | ⊢ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) = ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) |
| 12 | 11 | fveq2i | ⊢ ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( iEdg ‘ ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ) |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( iEdg ‘ ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ) ) |
| 14 | structex | ⊢ ( 𝐺 Struct 𝑋 → 𝐺 ∈ V ) | |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 16 | edgfid | ⊢ .ef = Slot ( .ef ‘ ndx ) | |
| 17 | 16 | setsid | ⊢ ( ( 𝐺 ∈ V ∧ 𝐸 ∈ 𝑊 ) → 𝐸 = ( .ef ‘ ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ) ) |
| 18 | 15 4 17 | syl2anc | ⊢ ( 𝜑 → 𝐸 = ( .ef ‘ ( 𝐺 sSet 〈 ( .ef ‘ ndx ) , 𝐸 〉 ) ) ) |
| 19 | 9 13 18 | 3eqtr4d | ⊢ ( 𝜑 → ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = 𝐸 ) |