This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring ( ph -> G Struct X ) , it would be sufficient to require ( ph -> Fun ( G \ { (/) } ) ) and ( ph -> G e. _V ) . (Contributed by AV, 13-Nov-2021) (Proof shortened by AV, 16-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrstrrepe.v | |- V = ( Base ` G ) |
|
| usgrstrrepe.i | |- I = ( .ef ` ndx ) |
||
| usgrstrrepe.s | |- ( ph -> G Struct X ) |
||
| usgrstrrepe.b | |- ( ph -> ( Base ` ndx ) e. dom G ) |
||
| usgrstrrepe.w | |- ( ph -> E e. W ) |
||
| usgrstrrepe.e | |- ( ph -> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
||
| Assertion | usgrstrrepe | |- ( ph -> ( G sSet <. I , E >. ) e. USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrstrrepe.v | |- V = ( Base ` G ) |
|
| 2 | usgrstrrepe.i | |- I = ( .ef ` ndx ) |
|
| 3 | usgrstrrepe.s | |- ( ph -> G Struct X ) |
|
| 4 | usgrstrrepe.b | |- ( ph -> ( Base ` ndx ) e. dom G ) |
|
| 5 | usgrstrrepe.w | |- ( ph -> E e. W ) |
|
| 6 | usgrstrrepe.e | |- ( ph -> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
|
| 7 | 2 3 4 5 | setsvtx | |- ( ph -> ( Vtx ` ( G sSet <. I , E >. ) ) = ( Base ` G ) ) |
| 8 | 7 1 | eqtr4di | |- ( ph -> ( Vtx ` ( G sSet <. I , E >. ) ) = V ) |
| 9 | 8 | pweqd | |- ( ph -> ~P ( Vtx ` ( G sSet <. I , E >. ) ) = ~P V ) |
| 10 | 9 | rabeqdv | |- ( ph -> { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } ) |
| 11 | f1eq3 | |- ( { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } -> ( E : dom E -1-1-> { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } <-> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( E : dom E -1-1-> { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } <-> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 13 | 6 12 | mpbird | |- ( ph -> E : dom E -1-1-> { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } ) |
| 14 | 2 3 4 5 | setsiedg | |- ( ph -> ( iEdg ` ( G sSet <. I , E >. ) ) = E ) |
| 15 | 14 | dmeqd | |- ( ph -> dom ( iEdg ` ( G sSet <. I , E >. ) ) = dom E ) |
| 16 | eqidd | |- ( ph -> { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } = { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } ) |
|
| 17 | 14 15 16 | f1eq123d | |- ( ph -> ( ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) -1-1-> { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } <-> E : dom E -1-1-> { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } ) ) |
| 18 | 13 17 | mpbird | |- ( ph -> ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) -1-1-> { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } ) |
| 19 | ovex | |- ( G sSet <. I , E >. ) e. _V |
|
| 20 | eqid | |- ( Vtx ` ( G sSet <. I , E >. ) ) = ( Vtx ` ( G sSet <. I , E >. ) ) |
|
| 21 | eqid | |- ( iEdg ` ( G sSet <. I , E >. ) ) = ( iEdg ` ( G sSet <. I , E >. ) ) |
|
| 22 | 20 21 | isusgrs | |- ( ( G sSet <. I , E >. ) e. _V -> ( ( G sSet <. I , E >. ) e. USGraph <-> ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) -1-1-> { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } ) ) |
| 23 | 19 22 | mp1i | |- ( ph -> ( ( G sSet <. I , E >. ) e. USGraph <-> ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) -1-1-> { x e. ~P ( Vtx ` ( G sSet <. I , E >. ) ) | ( # ` x ) = 2 } ) ) |
| 24 | 18 23 | mpbird | |- ( ph -> ( G sSet <. I , E >. ) e. USGraph ) |