This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 18-Jan-2020) (Revised by AV, 16-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsvtx.i | ⊢ 𝐼 = ( .ef ‘ ndx ) | |
| setsvtx.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | ||
| setsvtx.b | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝐺 ) | ||
| setsvtx.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| Assertion | setsvtx | ⊢ ( 𝜑 → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Base ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsvtx.i | ⊢ 𝐼 = ( .ef ‘ ndx ) | |
| 2 | setsvtx.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| 3 | setsvtx.b | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝐺 ) | |
| 4 | setsvtx.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 5 | 1 | fvexi | ⊢ 𝐼 ∈ V |
| 6 | 5 | a1i | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 7 | 2 6 4 | setsn0fun | ⊢ ( 𝜑 → Fun ( ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) |
| 8 | 1 | eqcomi | ⊢ ( .ef ‘ ndx ) = 𝐼 |
| 9 | 8 | preq2i | ⊢ { ( Base ‘ ndx ) , ( .ef ‘ ndx ) } = { ( Base ‘ ndx ) , 𝐼 } |
| 10 | 2 6 4 3 | basprssdmsets | ⊢ ( 𝜑 → { ( Base ‘ ndx ) , 𝐼 } ⊆ dom ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) |
| 11 | 9 10 | eqsstrid | ⊢ ( 𝜑 → { ( Base ‘ ndx ) , ( .ef ‘ ndx ) } ⊆ dom ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) |
| 12 | funvtxval | ⊢ ( ( Fun ( ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ∧ { ( Base ‘ ndx ) , ( .ef ‘ ndx ) } ⊆ dom ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Base ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ) | |
| 13 | 7 11 12 | syl2anc | ⊢ ( 𝜑 → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Base ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ) |
| 14 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 15 | basendxnedgfndx | ⊢ ( Base ‘ ndx ) ≠ ( .ef ‘ ndx ) | |
| 16 | 15 1 | neeqtrri | ⊢ ( Base ‘ ndx ) ≠ 𝐼 |
| 17 | 14 16 | setsnid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) |
| 18 | 13 17 | eqtr4di | ⊢ ( 𝜑 → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Base ‘ 𝐺 ) ) |