This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the "edge function" of a simple graph is a set containing two elements (the endvertices of the corresponding edge). (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 17-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg3.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgredg3.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | usgredg3 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑦 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg3.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgredg3.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | usgrfun | ⊢ ( 𝐺 ∈ USGraph → Fun ( iEdg ‘ 𝐺 ) ) | |
| 4 | 2 | funeqi | ⊢ ( Fun 𝐸 ↔ Fun ( iEdg ‘ 𝐺 ) ) |
| 5 | 3 4 | sylibr | ⊢ ( 𝐺 ∈ USGraph → Fun 𝐸 ) |
| 6 | fvelrn | ⊢ ( ( Fun 𝐸 ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ ran 𝐸 ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ ran 𝐸 ) |
| 8 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 9 | 8 | a1i | ⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 10 | 2 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐸 |
| 11 | 10 | rneqi | ⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐸 |
| 12 | 9 11 | eqtrdi | ⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran 𝐸 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( Edg ‘ 𝐺 ) = ran 𝐸 ) |
| 14 | 7 13 | eleqtrrd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 15 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 16 | 1 15 | usgredg | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑦 } ) ) |
| 17 | 14 16 | syldan | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑦 } ) ) |