This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 17-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg3.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgredg3.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | usgredg4 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg3.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgredg3.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | usgredg3 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) |
| 4 | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑥 , 𝑧 } ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑥 , 𝑧 } ) ) |
| 6 | 5 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑥 , 𝑧 } ) ) |
| 7 | simplrr | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → 𝑧 ∈ 𝑉 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → 𝑧 ∈ 𝑉 ) |
| 9 | preq2 | ⊢ ( 𝑦 = 𝑧 → { 𝑥 , 𝑦 } = { 𝑥 , 𝑧 } ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝑦 = 𝑧 → ( { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑥 , 𝑧 } ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) ∧ 𝑦 = 𝑧 ) → ( { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑥 , 𝑧 } ) ) |
| 12 | eqidd | ⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → { 𝑥 , 𝑧 } = { 𝑥 , 𝑧 } ) | |
| 13 | 8 11 12 | rspcedvd | ⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ∃ 𝑦 ∈ 𝑉 { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ) |
| 14 | simprr | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) | |
| 15 | preq1 | ⊢ ( 𝑌 = 𝑥 → { 𝑌 , 𝑦 } = { 𝑥 , 𝑦 } ) | |
| 16 | 14 15 | eqeqan12rd | ⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ) ) |
| 17 | 16 | rexbidv | ⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ( ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ ∃ 𝑦 ∈ 𝑉 { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ) ) |
| 18 | 13 17 | mpbird | ⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |
| 19 | 18 | ex | ⊢ ( 𝑌 = 𝑥 → ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
| 20 | simplrl | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → 𝑥 ∈ 𝑉 ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → 𝑥 ∈ 𝑉 ) |
| 22 | preq2 | ⊢ ( 𝑦 = 𝑥 → { 𝑧 , 𝑦 } = { 𝑧 , 𝑥 } ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑦 = 𝑥 → ( { 𝑥 , 𝑧 } = { 𝑧 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } ) ) |
| 24 | 23 | adantl | ⊢ ( ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) ∧ 𝑦 = 𝑥 ) → ( { 𝑥 , 𝑧 } = { 𝑧 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } ) ) |
| 25 | prcom | ⊢ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } | |
| 26 | 25 | a1i | ⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } ) |
| 27 | 21 24 26 | rspcedvd | ⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ∃ 𝑦 ∈ 𝑉 { 𝑥 , 𝑧 } = { 𝑧 , 𝑦 } ) |
| 28 | preq1 | ⊢ ( 𝑌 = 𝑧 → { 𝑌 , 𝑦 } = { 𝑧 , 𝑦 } ) | |
| 29 | 14 28 | eqeqan12rd | ⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑧 , 𝑦 } ) ) |
| 30 | 29 | rexbidv | ⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ( ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ ∃ 𝑦 ∈ 𝑉 { 𝑥 , 𝑧 } = { 𝑧 , 𝑦 } ) ) |
| 31 | 27 30 | mpbird | ⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |
| 32 | 31 | ex | ⊢ ( 𝑌 = 𝑧 → ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
| 33 | 19 32 | jaoi | ⊢ ( ( 𝑌 = 𝑥 ∨ 𝑌 = 𝑧 ) → ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
| 34 | elpri | ⊢ ( 𝑌 ∈ { 𝑥 , 𝑧 } → ( 𝑌 = 𝑥 ∨ 𝑌 = 𝑧 ) ) | |
| 35 | 33 34 | syl11 | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ( 𝑌 ∈ { 𝑥 , 𝑧 } → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
| 36 | 6 35 | sylbid | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
| 37 | 36 | ex | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) ) |
| 38 | 37 | rexlimdvva | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) ) |
| 39 | 3 38 | mpd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
| 40 | 39 | 3impia | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |