This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the "edge function" of a simple graph is a set containing two elements (the endvertices of the corresponding edge). (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 17-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg3.v | |- V = ( Vtx ` G ) |
|
| usgredg3.e | |- E = ( iEdg ` G ) |
||
| Assertion | usgredg3 | |- ( ( G e. USGraph /\ X e. dom E ) -> E. x e. V E. y e. V ( x =/= y /\ ( E ` X ) = { x , y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg3.v | |- V = ( Vtx ` G ) |
|
| 2 | usgredg3.e | |- E = ( iEdg ` G ) |
|
| 3 | usgrfun | |- ( G e. USGraph -> Fun ( iEdg ` G ) ) |
|
| 4 | 2 | funeqi | |- ( Fun E <-> Fun ( iEdg ` G ) ) |
| 5 | 3 4 | sylibr | |- ( G e. USGraph -> Fun E ) |
| 6 | fvelrn | |- ( ( Fun E /\ X e. dom E ) -> ( E ` X ) e. ran E ) |
|
| 7 | 5 6 | sylan | |- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. ran E ) |
| 8 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 9 | 8 | a1i | |- ( G e. USGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 10 | 2 | eqcomi | |- ( iEdg ` G ) = E |
| 11 | 10 | rneqi | |- ran ( iEdg ` G ) = ran E |
| 12 | 9 11 | eqtrdi | |- ( G e. USGraph -> ( Edg ` G ) = ran E ) |
| 13 | 12 | adantr | |- ( ( G e. USGraph /\ X e. dom E ) -> ( Edg ` G ) = ran E ) |
| 14 | 7 13 | eleqtrrd | |- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. ( Edg ` G ) ) |
| 15 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 16 | 1 15 | usgredg | |- ( ( G e. USGraph /\ ( E ` X ) e. ( Edg ` G ) ) -> E. x e. V E. y e. V ( x =/= y /\ ( E ` X ) = { x , y } ) ) |
| 17 | 14 16 | syldan | |- ( ( G e. USGraph /\ X e. dom E ) -> E. x e. V E. y e. V ( x =/= y /\ ( E ` X ) = { x , y } ) ) |