This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for usgr2wlkspth . (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 27-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr2wlkspthlem2 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → Fun ◡ 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → 𝐺 ∈ USGraph ) | |
| 2 | 1 | anim2i | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐺 ∈ USGraph ) ) |
| 3 | 2 | ancomd | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐺 ∈ USGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ) |
| 4 | 3simpc | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 6 | usgr2wlkneq | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ∧ ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
| 8 | simpl | ⊢ ( ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) | |
| 9 | fvex | ⊢ ( 𝑃 ‘ 0 ) ∈ V | |
| 10 | fvex | ⊢ ( 𝑃 ‘ 1 ) ∈ V | |
| 11 | fvex | ⊢ ( 𝑃 ‘ 2 ) ∈ V | |
| 12 | 9 10 11 | 3pm3.2i | ⊢ ( ( 𝑃 ‘ 0 ) ∈ V ∧ ( 𝑃 ‘ 1 ) ∈ V ∧ ( 𝑃 ‘ 2 ) ∈ V ) |
| 13 | 8 12 | jctil | ⊢ ( ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → ( ( ( 𝑃 ‘ 0 ) ∈ V ∧ ( 𝑃 ‘ 1 ) ∈ V ∧ ( 𝑃 ‘ 2 ) ∈ V ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 14 | funcnvs3 | ⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ V ∧ ( 𝑃 ‘ 1 ) ∈ V ∧ ( 𝑃 ‘ 2 ) ∈ V ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → Fun ◡ 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ( 𝑃 ‘ 2 ) ”〉 ) | |
| 15 | 7 13 14 | 3syl | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → Fun ◡ 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ( 𝑃 ‘ 2 ) ”〉 ) |
| 16 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 17 | 16 | wlkpwrd | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 18 | wlklenvp1 | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) | |
| 19 | oveq1 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( ♯ ‘ 𝐹 ) + 1 ) = ( 2 + 1 ) ) | |
| 20 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 21 | 19 20 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( ♯ ‘ 𝐹 ) + 1 ) = 3 ) |
| 22 | 21 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) + 1 ) = 3 ) |
| 23 | 18 22 | sylan9eq | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ♯ ‘ 𝑃 ) = 3 ) |
| 24 | wrdlen3s3 | ⊢ ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = 3 ) → 𝑃 = 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ( 𝑃 ‘ 2 ) ”〉 ) | |
| 25 | 17 23 24 | syl2an2r | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → 𝑃 = 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ( 𝑃 ‘ 2 ) ”〉 ) |
| 26 | 25 | cnveqd | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ◡ 𝑃 = ◡ 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ( 𝑃 ‘ 2 ) ”〉 ) |
| 27 | 26 | funeqd | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( Fun ◡ 𝑃 ↔ Fun ◡ 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ( 𝑃 ‘ 2 ) ”〉 ) ) |
| 28 | 15 27 | mpbird | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → Fun ◡ 𝑃 ) |