This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word of length two as doubleton word. (Contributed by AV, 20-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdlen2s2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrd2pr2op | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → 𝑊 = { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } ) | |
| 2 | fvex | ⊢ ( 𝑊 ‘ 0 ) ∈ V | |
| 3 | fvex | ⊢ ( 𝑊 ‘ 1 ) ∈ V | |
| 4 | s2prop | ⊢ ( ( ( 𝑊 ‘ 0 ) ∈ V ∧ ( 𝑊 ‘ 1 ) ∈ V ) → 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 = { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } ) | |
| 5 | 4 | eqcomd | ⊢ ( ( ( 𝑊 ‘ 0 ) ∈ V ∧ ( 𝑊 ‘ 1 ) ∈ V ) → { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 ) |
| 6 | 2 3 5 | mp2an | ⊢ { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 |
| 7 | 1 6 | eqtrdi | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 ) |