This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr1v0edg | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ∧ Fun ( iEdg ‘ 𝐺 ) ) → ( 𝐺 ∈ USGraph ↔ ( Edg ‘ 𝐺 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr1v | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ∧ Fun ( iEdg ‘ 𝐺 ) ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 3 | funrel | ⊢ ( Fun ( iEdg ‘ 𝐺 ) → Rel ( iEdg ‘ 𝐺 ) ) | |
| 4 | relrn0 | ⊢ ( Rel ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) = ∅ ↔ ran ( iEdg ‘ 𝐺 ) = ∅ ) ) | |
| 5 | 3 4 | syl | ⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) = ∅ ↔ ran ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ∧ Fun ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) = ∅ ↔ ran ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 7 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 8 | 7 | eqcomi | ⊢ ran ( iEdg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 9 | 8 | eqeq1i | ⊢ ( ran ( iEdg ‘ 𝐺 ) = ∅ ↔ ( Edg ‘ 𝐺 ) = ∅ ) |
| 10 | 9 | a1i | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ∧ Fun ( iEdg ‘ 𝐺 ) ) → ( ran ( iEdg ‘ 𝐺 ) = ∅ ↔ ( Edg ‘ 𝐺 ) = ∅ ) ) |
| 11 | 2 6 10 | 3bitrd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ∧ Fun ( iEdg ‘ 𝐺 ) ) → ( 𝐺 ∈ USGraph ↔ ( Edg ‘ 𝐺 ) = ∅ ) ) |