This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The null graph represented by an empty set is a simple graph. (Contributed by AV, 16-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr0 | ⊢ ∅ ∈ USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f10 | ⊢ ∅ : ∅ –1-1→ { 𝑥 ∈ ( 𝒫 ∅ ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } | |
| 2 | dm0 | ⊢ dom ∅ = ∅ | |
| 3 | f1eq2 | ⊢ ( dom ∅ = ∅ → ( ∅ : dom ∅ –1-1→ { 𝑥 ∈ ( 𝒫 ∅ ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ∅ : ∅ –1-1→ { 𝑥 ∈ ( 𝒫 ∅ ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ∅ : dom ∅ –1-1→ { 𝑥 ∈ ( 𝒫 ∅ ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ∅ : ∅ –1-1→ { 𝑥 ∈ ( 𝒫 ∅ ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 5 | 1 4 | mpbir | ⊢ ∅ : dom ∅ –1-1→ { 𝑥 ∈ ( 𝒫 ∅ ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | vtxval0 | ⊢ ( Vtx ‘ ∅ ) = ∅ | |
| 8 | 7 | eqcomi | ⊢ ∅ = ( Vtx ‘ ∅ ) |
| 9 | iedgval0 | ⊢ ( iEdg ‘ ∅ ) = ∅ | |
| 10 | 9 | eqcomi | ⊢ ∅ = ( iEdg ‘ ∅ ) |
| 11 | 8 10 | isusgr | ⊢ ( ∅ ∈ V → ( ∅ ∈ USGraph ↔ ∅ : dom ∅ –1-1→ { 𝑥 ∈ ( 𝒫 ∅ ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 12 | 6 11 | ax-mp | ⊢ ( ∅ ∈ USGraph ↔ ∅ : dom ∅ –1-1→ { 𝑥 ∈ ( 𝒫 ∅ ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 13 | 5 12 | mpbir | ⊢ ∅ ∈ USGraph |