This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The null graph represented by an empty set is a simple graph. (Contributed by AV, 16-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr0 | |- (/) e. USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f10 | |- (/) : (/) -1-1-> { x e. ( ~P (/) \ { (/) } ) | ( # ` x ) = 2 } |
|
| 2 | dm0 | |- dom (/) = (/) |
|
| 3 | f1eq2 | |- ( dom (/) = (/) -> ( (/) : dom (/) -1-1-> { x e. ( ~P (/) \ { (/) } ) | ( # ` x ) = 2 } <-> (/) : (/) -1-1-> { x e. ( ~P (/) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
|
| 4 | 2 3 | ax-mp | |- ( (/) : dom (/) -1-1-> { x e. ( ~P (/) \ { (/) } ) | ( # ` x ) = 2 } <-> (/) : (/) -1-1-> { x e. ( ~P (/) \ { (/) } ) | ( # ` x ) = 2 } ) |
| 5 | 1 4 | mpbir | |- (/) : dom (/) -1-1-> { x e. ( ~P (/) \ { (/) } ) | ( # ` x ) = 2 } |
| 6 | 0ex | |- (/) e. _V |
|
| 7 | vtxval0 | |- ( Vtx ` (/) ) = (/) |
|
| 8 | 7 | eqcomi | |- (/) = ( Vtx ` (/) ) |
| 9 | iedgval0 | |- ( iEdg ` (/) ) = (/) |
|
| 10 | 9 | eqcomi | |- (/) = ( iEdg ` (/) ) |
| 11 | 8 10 | isusgr | |- ( (/) e. _V -> ( (/) e. USGraph <-> (/) : dom (/) -1-1-> { x e. ( ~P (/) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 12 | 6 11 | ax-mp | |- ( (/) e. USGraph <-> (/) : dom (/) -1-1-> { x e. ( ~P (/) \ { (/) } ) | ( # ` x ) = 2 } ) |
| 13 | 5 12 | mpbir | |- (/) e. USGraph |