This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptr.y | ||
| uptr.r | |||
| uptr.k | |||
| uptr.b | |||
| uptr.x | |||
| uptr.f | |||
| uptr.n | |||
| uptr.j | |||
| uptr.m | |||
| Assertion | uptr | Could not format assertion : No typesetting found for |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr.y | ||
| 2 | uptr.r | ||
| 3 | uptr.k | ||
| 4 | uptr.b | ||
| 5 | uptr.x | ||
| 6 | uptr.f | ||
| 7 | uptr.n | ||
| 8 | uptr.j | ||
| 9 | uptr.m | ||
| 10 | simpr | Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z ( <. F , G >. ( C UP D ) X ) M ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z ( <. F , G >. ( C UP D ) X ) M ) with typecode |- | |
| 11 | simpr | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z ( <. K , L >. ( C UP E ) Y ) N ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z ( <. K , L >. ( C UP E ) Y ) N ) with typecode |- | |
| 12 | 1 | adantr | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( R ` X ) = Y ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( R ` X ) = Y ) with typecode |- |
| 13 | 2 | adantr | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) with typecode |- |
| 14 | 3 | adantr | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) with typecode |- |
| 15 | 5 | adantr | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> X e. B ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> X e. B ) with typecode |- |
| 16 | 6 | adantr | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> F ( C Func D ) G ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> F ( C Func D ) G ) with typecode |- |
| 17 | 7 | adantr | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) with typecode |- |
| 18 | 9 | adantr | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> M e. ( X J ( F ` Z ) ) ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> M e. ( X J ( F ` Z ) ) ) with typecode |- |
| 19 | eqid | ||
| 20 | 11 19 | uprcl4 | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z e. ( Base ` C ) ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z e. ( Base ` C ) ) with typecode |- |
| 21 | 12 13 14 4 15 16 17 8 18 19 20 | uptrlem3 | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |- |
| 22 | 11 21 | mpbird | Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z ( <. F , G >. ( C UP D ) X ) M ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z ( <. F , G >. ( C UP D ) X ) M ) with typecode |- |
| 23 | 1 | adantr | Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( R ` X ) = Y ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( R ` X ) = Y ) with typecode |- |
| 24 | 2 | adantr | Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) with typecode |- |
| 25 | 3 | adantr | Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) with typecode |- |
| 26 | 5 | adantr | Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> X e. B ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> X e. B ) with typecode |- |
| 27 | 6 | adantr | Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> F ( C Func D ) G ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> F ( C Func D ) G ) with typecode |- |
| 28 | 7 | adantr | Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) with typecode |- |
| 29 | 9 | adantr | Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> M e. ( X J ( F ` Z ) ) ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> M e. ( X J ( F ` Z ) ) ) with typecode |- |
| 30 | 10 19 | uprcl4 | Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z e. ( Base ` C ) ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z e. ( Base ` C ) ) with typecode |- |
| 31 | 23 24 25 4 26 27 28 8 29 19 30 | uptrlem3 | Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |- |
| 32 | 10 22 31 | bibiad | Could not format ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |- |