This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptr.y | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) | |
| uptr.r | ⊢ ( 𝜑 → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) | ||
| uptr.k | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) | ||
| uptri.n | ⊢ ( 𝜑 → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) | ||
| uptri.z | ⊢ ( 𝜑 → 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) | ||
| Assertion | uptri | ⊢ ( 𝜑 → 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr.y | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) | |
| 2 | uptr.r | ⊢ ( 𝜑 → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) | |
| 3 | uptr.k | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) | |
| 4 | uptri.n | ⊢ ( 𝜑 → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) | |
| 5 | uptri.z | ⊢ ( 𝜑 → 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) | |
| 6 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) |
| 11 | 10 9 | uprcl3 | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 12 | 10 | uprcl2 | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 14 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 15 | 10 14 | uprcl5 | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑀 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑍 ) ) ) |
| 16 | 6 7 8 9 11 12 13 14 15 | uptr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |
| 17 | 5 16 | mpdan | ⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |
| 18 | 5 17 | mpbid | ⊢ ( 𝜑 → 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) |