This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | upgredgpr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → { 𝐴 , 𝐵 } = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | upgredg | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) |
| 5 | ssprsseq | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝑎 , 𝑏 } ↔ { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) | |
| 6 | 5 | biimpd | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝑎 , 𝑏 } → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 7 | sseq2 | ⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( { 𝐴 , 𝐵 } ⊆ 𝐶 ↔ { 𝐴 , 𝐵 } ⊆ { 𝑎 , 𝑏 } ) ) | |
| 8 | eqeq2 | ⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( { 𝐴 , 𝐵 } = 𝐶 ↔ { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) | |
| 9 | 7 8 | imbi12d | ⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( ( { 𝐴 , 𝐵 } ⊆ 𝐶 → { 𝐴 , 𝐵 } = 𝐶 ) ↔ ( { 𝐴 , 𝐵 } ⊆ { 𝑎 , 𝑏 } → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 10 | 6 9 | imbitrrid | ⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ⊆ 𝐶 → { 𝐴 , 𝐵 } = 𝐶 ) ) ) |
| 11 | 10 | com23 | ⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( { 𝐴 , 𝐵 } ⊆ 𝐶 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = 𝐶 ) ) ) |
| 12 | 11 | a1i | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐶 = { 𝑎 , 𝑏 } → ( { 𝐴 , 𝐵 } ⊆ 𝐶 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = 𝐶 ) ) ) ) |
| 13 | 12 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } → ( { 𝐴 , 𝐵 } ⊆ 𝐶 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = 𝐶 ) ) ) |
| 14 | 13 | com12 | ⊢ ( { 𝐴 , 𝐵 } ⊆ 𝐶 → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = 𝐶 ) ) ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = 𝐶 ) ) ) |
| 16 | 4 15 | mpd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = 𝐶 ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → { 𝐴 , 𝐵 } = 𝐶 ) |