This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssprsseq | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssprss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |
| 3 | eqneqall | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) | |
| 4 | eqtr3 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) | |
| 5 | 3 4 | syl11 | ⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 7 | 6 | com12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 8 | preq12 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) | |
| 9 | prcom | ⊢ { 𝐷 , 𝐶 } = { 𝐶 , 𝐷 } | |
| 10 | 8 9 | eqtrdi | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
| 11 | 10 | a1d | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 12 | preq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) | |
| 13 | 12 | a1d | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 14 | eqtr3 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → 𝐴 = 𝐵 ) | |
| 15 | 3 14 | syl11 | ⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 17 | 16 | com12 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 18 | 7 11 13 17 | ccase | ⊢ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 19 | 18 | com12 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 20 | 2 19 | sylbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 21 | eqimss | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ) | |
| 22 | 20 21 | impbid1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |