This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | edginwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| edginwlk.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | upgredginwlk | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼 ) → ( 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edginwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | edginwlk.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | upgruhgr | ⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
| 4 | 1 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 5 | 3 4 | syl | ⊢ ( 𝐺 ∈ UPGraph → Fun 𝐼 ) |
| 6 | 1 2 | edginwlk | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ 𝐸 ) |
| 7 | 6 | 3expia | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ) → ( 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ 𝐸 ) ) |
| 8 | 5 7 | sylan | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼 ) → ( 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ 𝐸 ) ) |