This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021) (Revised by AV, 9-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | edginwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| edginwlk.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | edginwlk | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edginwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | edginwlk.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | simp1 | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun 𝐼 ) | |
| 4 | wrdsymbcl | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝐾 ) ∈ dom 𝐼 ) | |
| 5 | 4 | 3adant1 | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝐾 ) ∈ dom 𝐼 ) |
| 6 | fvelrn | ⊢ ( ( Fun 𝐼 ∧ ( 𝐹 ‘ 𝐾 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ ran 𝐼 ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ ran 𝐼 ) |
| 8 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 9 | 1 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 10 | 9 | rneqi | ⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
| 11 | 2 8 10 | 3eqtri | ⊢ 𝐸 = ran 𝐼 |
| 12 | 7 11 | eleqtrrdi | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ 𝐸 ) |