This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | umgredg | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 2 | eleq2i | ⊢ ( 𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) |
| 4 | edgumgr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) | |
| 5 | 3 4 | sylan2b | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 6 | hash2prde | ⊢ ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) | |
| 7 | eleq1 | ⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ { 𝑎 , 𝑏 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) ) | |
| 8 | prex | ⊢ { 𝑎 , 𝑏 } ∈ V | |
| 9 | 8 | elpw | ⊢ ( { 𝑎 , 𝑏 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 10 | vex | ⊢ 𝑎 ∈ V | |
| 11 | vex | ⊢ 𝑏 ∈ V | |
| 12 | 10 11 | prss | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ↔ { 𝑎 , 𝑏 } ⊆ 𝑉 ) |
| 13 | 1 | sseq2i | ⊢ ( { 𝑎 , 𝑏 } ⊆ 𝑉 ↔ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 14 | 12 13 | sylbbr | ⊢ ( { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
| 15 | 9 14 | sylbi | ⊢ ( { 𝑎 , 𝑏 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
| 16 | 7 15 | biimtrdi | ⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
| 17 | 16 | adantrd | ⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) → ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
| 19 | 18 | imdistanri | ⊢ ( ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) |
| 20 | 19 | ex | ⊢ ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) ) |
| 21 | 20 | 2eximdv | ⊢ ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) → ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) ) |
| 22 | 6 21 | mpd | ⊢ ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) |
| 23 | 5 22 | syl | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) |
| 24 | r2ex | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) | |
| 25 | 23 24 | sylibr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) |