This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020) (Proof shortened by AV, 26-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgredg.v | |- V = ( Vtx ` G ) |
|
| upgredg.e | |- E = ( Edg ` G ) |
||
| Assertion | upgredg | |- ( ( G e. UPGraph /\ C e. E ) -> E. a e. V E. b e. V C = { a , b } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | |- V = ( Vtx ` G ) |
|
| 2 | upgredg.e | |- E = ( Edg ` G ) |
|
| 3 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 4 | 3 | a1i | |- ( G e. UPGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 5 | 2 4 | eqtrid | |- ( G e. UPGraph -> E = ran ( iEdg ` G ) ) |
| 6 | 5 | eleq2d | |- ( G e. UPGraph -> ( C e. E <-> C e. ran ( iEdg ` G ) ) ) |
| 7 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 8 | 1 7 | upgrf | |- ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 9 | 8 | frnd | |- ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 10 | 9 | sseld | |- ( G e. UPGraph -> ( C e. ran ( iEdg ` G ) -> C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 11 | 6 10 | sylbid | |- ( G e. UPGraph -> ( C e. E -> C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 12 | 11 | imp | |- ( ( G e. UPGraph /\ C e. E ) -> C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 13 | fveq2 | |- ( x = C -> ( # ` x ) = ( # ` C ) ) |
|
| 14 | 13 | breq1d | |- ( x = C -> ( ( # ` x ) <_ 2 <-> ( # ` C ) <_ 2 ) ) |
| 15 | 14 | elrab | |- ( C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( C e. ( ~P V \ { (/) } ) /\ ( # ` C ) <_ 2 ) ) |
| 16 | hashle2prv | |- ( C e. ( ~P V \ { (/) } ) -> ( ( # ` C ) <_ 2 <-> E. a e. V E. b e. V C = { a , b } ) ) |
|
| 17 | 16 | biimpa | |- ( ( C e. ( ~P V \ { (/) } ) /\ ( # ` C ) <_ 2 ) -> E. a e. V E. b e. V C = { a , b } ) |
| 18 | 15 17 | sylbi | |- ( C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> E. a e. V E. b e. V C = { a , b } ) |
| 19 | 12 18 | syl | |- ( ( G e. UPGraph /\ C e. E ) -> E. a e. V E. b e. V C = { a , b } ) |