This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 16-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 17-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgr1e.v | |- V = ( Vtx ` G ) |
|
| upgr1e.a | |- ( ph -> A e. X ) |
||
| upgr1e.b | |- ( ph -> B e. V ) |
||
| upgr1e.c | |- ( ph -> C e. V ) |
||
| upgr1e.e | |- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
||
| Assertion | upgr1e | |- ( ph -> G e. UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1e.v | |- V = ( Vtx ` G ) |
|
| 2 | upgr1e.a | |- ( ph -> A e. X ) |
|
| 3 | upgr1e.b | |- ( ph -> B e. V ) |
|
| 4 | upgr1e.c | |- ( ph -> C e. V ) |
|
| 5 | upgr1e.e | |- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
|
| 6 | prex | |- { B , C } e. _V |
|
| 7 | 6 | snid | |- { B , C } e. { { B , C } } |
| 8 | 7 | a1i | |- ( ph -> { B , C } e. { { B , C } } ) |
| 9 | 2 8 | fsnd | |- ( ph -> { <. A , { B , C } >. } : { A } --> { { B , C } } ) |
| 10 | 3 4 | prssd | |- ( ph -> { B , C } C_ V ) |
| 11 | 10 1 | sseqtrdi | |- ( ph -> { B , C } C_ ( Vtx ` G ) ) |
| 12 | 6 | elpw | |- ( { B , C } e. ~P ( Vtx ` G ) <-> { B , C } C_ ( Vtx ` G ) ) |
| 13 | 11 12 | sylibr | |- ( ph -> { B , C } e. ~P ( Vtx ` G ) ) |
| 14 | 13 3 | upgr1elem | |- ( ph -> { { B , C } } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 15 | 9 14 | fssd | |- ( ph -> { <. A , { B , C } >. } : { A } --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 16 | 15 | ffdmd | |- ( ph -> { <. A , { B , C } >. } : dom { <. A , { B , C } >. } --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 17 | 5 | dmeqd | |- ( ph -> dom ( iEdg ` G ) = dom { <. A , { B , C } >. } ) |
| 18 | 5 17 | feq12d | |- ( ph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : dom { <. A , { B , C } >. } --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 19 | 16 18 | mpbird | |- ( ph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 20 | 1 | 1vgrex | |- ( B e. V -> G e. _V ) |
| 21 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 22 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 23 | 21 22 | isupgr | |- ( G e. _V -> ( G e. UPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 24 | 3 20 23 | 3syl | |- ( ph -> ( G e. UPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 25 | 19 24 | mpbird | |- ( ph -> G e. UPGraph ) |