This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isup and other theorems. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| upfval.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| upfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| upfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| upfval.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| upfval2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) | ||
| upfval3.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| Assertion | isuplem | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑀 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | upfval.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | upfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | upfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | upfval.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 6 | upfval2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) | |
| 7 | upfval3.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 8 | 1 2 3 4 5 6 7 | upfval3 | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| 9 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑦 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 11 | 10 | opeq2d | ⊢ ( 𝑥 = 𝑋 → 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 = 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ) |
| 12 | 11 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) = ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐺 𝑦 ) = ( 𝑋 𝐺 𝑦 ) ) | |
| 14 | 13 | fveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) = ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ) |
| 15 | eqidd | ⊢ ( 𝑥 = 𝑋 → 𝑚 = 𝑚 ) | |
| 16 | 12 14 15 | oveq123d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) |
| 17 | 16 | eqeq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 18 | 9 17 | reueqbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 19 | 18 | 2ralbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) | |
| 21 | 20 | eqeq2d | ⊢ ( 𝑚 = 𝑀 → ( 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 22 | 21 | reubidv | ⊢ ( 𝑚 = 𝑀 → ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 23 | 22 | 2ralbidv | ⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 24 | eqidd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑚 = 𝑀 ) → 𝐵 = 𝐵 ) | |
| 25 | simpl | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑚 = 𝑀 ) → 𝑥 = 𝑋 ) | |
| 26 | 25 | fveq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑚 = 𝑀 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑚 = 𝑀 ) → ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) = ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
| 28 | 8 19 23 24 27 | brab2ddw | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑀 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) ) |