This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unxpdom . (Contributed by Mario Carneiro, 13-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unxpdomlem1.1 | |- F = ( x e. ( a u. b ) |-> G ) |
|
| unxpdomlem1.2 | |- G = if ( x e. a , <. x , if ( x = m , t , s ) >. , <. if ( x = t , n , m ) , x >. ) |
||
| unxpdomlem2.1 | |- ( ph -> w e. ( a u. b ) ) |
||
| unxpdomlem2.2 | |- ( ph -> -. m = n ) |
||
| unxpdomlem2.3 | |- ( ph -> -. s = t ) |
||
| Assertion | unxpdomlem2 | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> -. ( F ` z ) = ( F ` w ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unxpdomlem1.1 | |- F = ( x e. ( a u. b ) |-> G ) |
|
| 2 | unxpdomlem1.2 | |- G = if ( x e. a , <. x , if ( x = m , t , s ) >. , <. if ( x = t , n , m ) , x >. ) |
|
| 3 | unxpdomlem2.1 | |- ( ph -> w e. ( a u. b ) ) |
|
| 4 | unxpdomlem2.2 | |- ( ph -> -. m = n ) |
|
| 5 | unxpdomlem2.3 | |- ( ph -> -. s = t ) |
|
| 6 | 5 | adantr | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> -. s = t ) |
| 7 | elun1 | |- ( z e. a -> z e. ( a u. b ) ) |
|
| 8 | 7 | ad2antrl | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> z e. ( a u. b ) ) |
| 9 | 1 2 | unxpdomlem1 | |- ( z e. ( a u. b ) -> ( F ` z ) = if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) ) |
| 10 | 8 9 | syl | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> ( F ` z ) = if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) ) |
| 11 | iftrue | |- ( z e. a -> if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) = <. z , if ( z = m , t , s ) >. ) |
|
| 12 | 11 | ad2antrl | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) = <. z , if ( z = m , t , s ) >. ) |
| 13 | 10 12 | eqtrd | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> ( F ` z ) = <. z , if ( z = m , t , s ) >. ) |
| 14 | 3 | adantr | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> w e. ( a u. b ) ) |
| 15 | 1 2 | unxpdomlem1 | |- ( w e. ( a u. b ) -> ( F ` w ) = if ( w e. a , <. w , if ( w = m , t , s ) >. , <. if ( w = t , n , m ) , w >. ) ) |
| 16 | 14 15 | syl | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> ( F ` w ) = if ( w e. a , <. w , if ( w = m , t , s ) >. , <. if ( w = t , n , m ) , w >. ) ) |
| 17 | iffalse | |- ( -. w e. a -> if ( w e. a , <. w , if ( w = m , t , s ) >. , <. if ( w = t , n , m ) , w >. ) = <. if ( w = t , n , m ) , w >. ) |
|
| 18 | 17 | ad2antll | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> if ( w e. a , <. w , if ( w = m , t , s ) >. , <. if ( w = t , n , m ) , w >. ) = <. if ( w = t , n , m ) , w >. ) |
| 19 | 16 18 | eqtrd | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> ( F ` w ) = <. if ( w = t , n , m ) , w >. ) |
| 20 | 13 19 | eqeq12d | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> ( ( F ` z ) = ( F ` w ) <-> <. z , if ( z = m , t , s ) >. = <. if ( w = t , n , m ) , w >. ) ) |
| 21 | 20 | biimpa | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> <. z , if ( z = m , t , s ) >. = <. if ( w = t , n , m ) , w >. ) |
| 22 | vex | |- z e. _V |
|
| 23 | vex | |- t e. _V |
|
| 24 | vex | |- s e. _V |
|
| 25 | 23 24 | ifex | |- if ( z = m , t , s ) e. _V |
| 26 | 22 25 | opth | |- ( <. z , if ( z = m , t , s ) >. = <. if ( w = t , n , m ) , w >. <-> ( z = if ( w = t , n , m ) /\ if ( z = m , t , s ) = w ) ) |
| 27 | 21 26 | sylib | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = if ( w = t , n , m ) /\ if ( z = m , t , s ) = w ) ) |
| 28 | 27 | simprd | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> if ( z = m , t , s ) = w ) |
| 29 | iftrue | |- ( z = m -> if ( z = m , t , s ) = t ) |
|
| 30 | 28 | eqeq1d | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( if ( z = m , t , s ) = t <-> w = t ) ) |
| 31 | 29 30 | imbitrid | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = m -> w = t ) ) |
| 32 | iftrue | |- ( w = t -> if ( w = t , n , m ) = n ) |
|
| 33 | 27 | simpld | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> z = if ( w = t , n , m ) ) |
| 34 | 33 | eqeq1d | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = n <-> if ( w = t , n , m ) = n ) ) |
| 35 | 32 34 | imbitrrid | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( w = t -> z = n ) ) |
| 36 | 31 35 | syld | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = m -> z = n ) ) |
| 37 | 4 | ad2antrr | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> -. m = n ) |
| 38 | equequ1 | |- ( z = m -> ( z = n <-> m = n ) ) |
|
| 39 | 38 | notbid | |- ( z = m -> ( -. z = n <-> -. m = n ) ) |
| 40 | 37 39 | syl5ibrcom | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = m -> -. z = n ) ) |
| 41 | 36 40 | pm2.65d | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> -. z = m ) |
| 42 | 41 | iffalsed | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> if ( z = m , t , s ) = s ) |
| 43 | iffalse | |- ( -. w = t -> if ( w = t , n , m ) = m ) |
|
| 44 | 33 | eqeq1d | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = m <-> if ( w = t , n , m ) = m ) ) |
| 45 | 43 44 | imbitrrid | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( -. w = t -> z = m ) ) |
| 46 | 41 45 | mt3d | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> w = t ) |
| 47 | 28 42 46 | 3eqtr3d | |- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> s = t ) |
| 48 | 6 47 | mtand | |- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> -. ( F ` z ) = ( F ` w ) ) |