This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unsnen.1 | ⊢ 𝐴 ∈ V | |
| unsnen.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | unsnen | ⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐴 ∪ { 𝐵 } ) ≈ suc ( card ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unsnen.1 | ⊢ 𝐴 ∈ V | |
| 2 | unsnen.2 | ⊢ 𝐵 ∈ V | |
| 3 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) | |
| 4 | cardon | ⊢ ( card ‘ 𝐴 ) ∈ On | |
| 5 | 4 | onordi | ⊢ Ord ( card ‘ 𝐴 ) |
| 6 | orddisj | ⊢ ( Ord ( card ‘ 𝐴 ) → ( ( card ‘ 𝐴 ) ∩ { ( card ‘ 𝐴 ) } ) = ∅ ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ( card ‘ 𝐴 ) ∩ { ( card ‘ 𝐴 ) } ) = ∅ |
| 8 | 1 | cardid | ⊢ ( card ‘ 𝐴 ) ≈ 𝐴 |
| 9 | 8 | ensymi | ⊢ 𝐴 ≈ ( card ‘ 𝐴 ) |
| 10 | fvex | ⊢ ( card ‘ 𝐴 ) ∈ V | |
| 11 | en2sn | ⊢ ( ( 𝐵 ∈ V ∧ ( card ‘ 𝐴 ) ∈ V ) → { 𝐵 } ≈ { ( card ‘ 𝐴 ) } ) | |
| 12 | 2 10 11 | mp2an | ⊢ { 𝐵 } ≈ { ( card ‘ 𝐴 ) } |
| 13 | unen | ⊢ ( ( ( 𝐴 ≈ ( card ‘ 𝐴 ) ∧ { 𝐵 } ≈ { ( card ‘ 𝐴 ) } ) ∧ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ∧ ( ( card ‘ 𝐴 ) ∩ { ( card ‘ 𝐴 ) } ) = ∅ ) ) → ( 𝐴 ∪ { 𝐵 } ) ≈ ( ( card ‘ 𝐴 ) ∪ { ( card ‘ 𝐴 ) } ) ) | |
| 14 | 9 12 13 | mpanl12 | ⊢ ( ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ∧ ( ( card ‘ 𝐴 ) ∩ { ( card ‘ 𝐴 ) } ) = ∅ ) → ( 𝐴 ∪ { 𝐵 } ) ≈ ( ( card ‘ 𝐴 ) ∪ { ( card ‘ 𝐴 ) } ) ) |
| 15 | 7 14 | mpan2 | ⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ → ( 𝐴 ∪ { 𝐵 } ) ≈ ( ( card ‘ 𝐴 ) ∪ { ( card ‘ 𝐴 ) } ) ) |
| 16 | 3 15 | sylbir | ⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐴 ∪ { 𝐵 } ) ≈ ( ( card ‘ 𝐴 ) ∪ { ( card ‘ 𝐴 ) } ) ) |
| 17 | df-suc | ⊢ suc ( card ‘ 𝐴 ) = ( ( card ‘ 𝐴 ) ∪ { ( card ‘ 𝐴 ) } ) | |
| 18 | 16 17 | breqtrrdi | ⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐴 ∪ { 𝐵 } ) ≈ suc ( card ‘ 𝐴 ) ) |