This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expression for double union that moves union into a class abstraction. (Contributed by FL, 28-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniuni | ⊢ ∪ ∪ 𝐴 = ∪ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni | ⊢ ( 𝑢 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) | |
| 2 | 1 | anbi2i | ⊢ ( ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝐴 ) ↔ ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑦 ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 3 | 2 | exbii | ⊢ ( ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝐴 ) ↔ ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑦 ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 4 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑧 ∈ 𝑢 ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑦 ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) | |
| 5 | 4 | bicomi | ⊢ ( ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑦 ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑢 ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑦 ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑢 ∃ 𝑦 ( 𝑧 ∈ 𝑢 ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 7 | excom | ⊢ ( ∃ 𝑢 ∃ 𝑦 ( 𝑧 ∈ 𝑢 ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑦 ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) | |
| 8 | anass | ⊢ ( ( ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑧 ∈ 𝑢 ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) | |
| 9 | ancom | ⊢ ( ( ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ) ) | |
| 10 | 8 9 | bitr3i | ⊢ ( ( 𝑧 ∈ 𝑢 ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ) ) |
| 11 | 10 | 2exbii | ⊢ ( ∃ 𝑦 ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑦 ∃ 𝑢 ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ) ) |
| 12 | exdistr | ⊢ ( ∃ 𝑦 ∃ 𝑢 ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ) ) | |
| 13 | 7 11 12 | 3bitri | ⊢ ( ∃ 𝑢 ∃ 𝑦 ( 𝑧 ∈ 𝑢 ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ) ) |
| 14 | eluni | ⊢ ( 𝑧 ∈ ∪ 𝑦 ↔ ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ) | |
| 15 | 14 | bicomi | ⊢ ( ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ↔ 𝑧 ∈ ∪ 𝑦 ) |
| 16 | 15 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦 ) ) |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦 ) ) |
| 18 | 6 13 17 | 3bitri | ⊢ ( ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑦 ( 𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦 ) ) |
| 19 | vuniex | ⊢ ∪ 𝑦 ∈ V | |
| 20 | eleq2 | ⊢ ( 𝑣 = ∪ 𝑦 → ( 𝑧 ∈ 𝑣 ↔ 𝑧 ∈ ∪ 𝑦 ) ) | |
| 21 | 19 20 | ceqsexv | ⊢ ( ∃ 𝑣 ( 𝑣 = ∪ 𝑦 ∧ 𝑧 ∈ 𝑣 ) ↔ 𝑧 ∈ ∪ 𝑦 ) |
| 22 | exancom | ⊢ ( ∃ 𝑣 ( 𝑣 = ∪ 𝑦 ∧ 𝑧 ∈ 𝑣 ) ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦 ) ) | |
| 23 | 21 22 | bitr3i | ⊢ ( 𝑧 ∈ ∪ 𝑦 ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦 ) ) |
| 24 | 23 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦 ) ) ) |
| 25 | 19.42v | ⊢ ( ∃ 𝑣 ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦 ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦 ) ) ) | |
| 26 | ancom | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦 ) ) ↔ ( ( 𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦 ) ∧ 𝑦 ∈ 𝐴 ) ) | |
| 27 | anass | ⊢ ( ( ( 𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦 ) ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑧 ∈ 𝑣 ∧ ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) | |
| 28 | 26 27 | bitri | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝑣 ∧ ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 29 | 28 | exbii | ⊢ ( ∃ 𝑣 ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦 ) ) ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 30 | 24 25 29 | 3bitr2i | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦 ) ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 31 | 30 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦 ) ↔ ∃ 𝑦 ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 32 | excom | ⊢ ( ∃ 𝑦 ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑣 ∃ 𝑦 ( 𝑧 ∈ 𝑣 ∧ ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) | |
| 33 | exdistr | ⊢ ( ∃ 𝑣 ∃ 𝑦 ( 𝑧 ∈ 𝑣 ∧ ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ ∃ 𝑦 ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) | |
| 34 | vex | ⊢ 𝑣 ∈ V | |
| 35 | eqeq1 | ⊢ ( 𝑥 = 𝑣 → ( 𝑥 = ∪ 𝑦 ↔ 𝑣 = ∪ 𝑦 ) ) | |
| 36 | 35 | anbi1d | ⊢ ( 𝑥 = 𝑣 → ( ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 37 | 36 | exbidv | ⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ↔ ∃ 𝑦 ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 38 | 34 37 | elab | ⊢ ( 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } ↔ ∃ 𝑦 ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
| 39 | 38 | bicomi | ⊢ ( ∃ 𝑦 ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ↔ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } ) |
| 40 | 39 | anbi2i | ⊢ ( ( 𝑧 ∈ 𝑣 ∧ ∃ 𝑦 ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } ) ) |
| 41 | 40 | exbii | ⊢ ( ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ ∃ 𝑦 ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } ) ) |
| 42 | 33 41 | bitri | ⊢ ( ∃ 𝑣 ∃ 𝑦 ( 𝑧 ∈ 𝑣 ∧ ( 𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } ) ) |
| 43 | 31 32 42 | 3bitri | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦 ) ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } ) ) |
| 44 | 3 18 43 | 3bitri | ⊢ ( ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝐴 ) ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } ) ) |
| 45 | 44 | abbii | ⊢ { 𝑧 ∣ ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝐴 ) } = { 𝑧 ∣ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } ) } |
| 46 | df-uni | ⊢ ∪ ∪ 𝐴 = { 𝑧 ∣ ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝐴 ) } | |
| 47 | df-uni | ⊢ ∪ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } = { 𝑧 ∣ ∃ 𝑣 ( 𝑧 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } ) } | |
| 48 | 45 46 47 | 3eqtr4i | ⊢ ∪ ∪ 𝐴 = ∪ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } |