This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitmulcl.1 | |- U = ( Unit ` R ) |
|
| unitgrp.2 | |- G = ( ( mulGrp ` R ) |`s U ) |
||
| Assertion | unitabl | |- ( R e. CRing -> G e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitmulcl.1 | |- U = ( Unit ` R ) |
|
| 2 | unitgrp.2 | |- G = ( ( mulGrp ` R ) |`s U ) |
|
| 3 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 4 | 1 2 | unitgrp | |- ( R e. Ring -> G e. Grp ) |
| 5 | 3 4 | syl | |- ( R e. CRing -> G e. Grp ) |
| 6 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 7 | 6 | crngmgp | |- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 8 | 5 | grpmndd | |- ( R e. CRing -> G e. Mnd ) |
| 9 | 2 | subcmn | |- ( ( ( mulGrp ` R ) e. CMnd /\ G e. Mnd ) -> G e. CMnd ) |
| 10 | 7 8 9 | syl2anc | |- ( R e. CRing -> G e. CMnd ) |
| 11 | isabl | |- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
|
| 12 | 5 10 11 | sylanbrc | |- ( R e. CRing -> G e. Abel ) |