This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a quotient set, like uniqsw but with a weaker antecedent: only the restriction of R by A needs to be a set, not R itself, see e.g. cnvepima . (Contributed by NM, 9-Dec-2008) (Revised by Peter Mazsa, 20-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniqs | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ∪ ( 𝐴 / 𝑅 ) = ( 𝑅 “ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elecex | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ( 𝑥 ∈ 𝐴 → [ 𝑥 ] 𝑅 ∈ V ) ) | |
| 2 | 1 | ralrimiv | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 ∈ V ) |
| 3 | dfiun2g | ⊢ ( ∀ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 ∈ V → ∪ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } ) |
| 5 | 4 | eqcomd | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } = ∪ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 ) |
| 6 | df-qs | ⊢ ( 𝐴 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } | |
| 7 | 6 | unieqi | ⊢ ∪ ( 𝐴 / 𝑅 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } |
| 8 | df-ec | ⊢ [ 𝑥 ] 𝑅 = ( 𝑅 “ { 𝑥 } ) | |
| 9 | 8 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → [ 𝑥 ] 𝑅 = ( 𝑅 “ { 𝑥 } ) ) |
| 10 | 9 | iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∪ 𝑥 ∈ 𝐴 ( 𝑅 “ { 𝑥 } ) |
| 11 | imaiun | ⊢ ( 𝑅 “ ∪ 𝑥 ∈ 𝐴 { 𝑥 } ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅 “ { 𝑥 } ) | |
| 12 | iunid | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = 𝐴 | |
| 13 | 12 | imaeq2i | ⊢ ( 𝑅 “ ∪ 𝑥 ∈ 𝐴 { 𝑥 } ) = ( 𝑅 “ 𝐴 ) |
| 14 | 10 11 13 | 3eqtr2ri | ⊢ ( 𝑅 “ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 |
| 15 | 5 7 14 | 3eqtr4g | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ∪ ( 𝐴 / 𝑅 ) = ( 𝑅 “ 𝐴 ) ) |