This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a quotient set, like uniqsw but with a weaker antecedent: only the restriction of R by A needs to be a set, not R itself, see e.g. cnvepima . (Contributed by NM, 9-Dec-2008) (Revised by Peter Mazsa, 20-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniqs | |- ( ( R |` A ) e. V -> U. ( A /. R ) = ( R " A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elecex | |- ( ( R |` A ) e. V -> ( x e. A -> [ x ] R e. _V ) ) |
|
| 2 | 1 | ralrimiv | |- ( ( R |` A ) e. V -> A. x e. A [ x ] R e. _V ) |
| 3 | dfiun2g | |- ( A. x e. A [ x ] R e. _V -> U_ x e. A [ x ] R = U. { y | E. x e. A y = [ x ] R } ) |
|
| 4 | 2 3 | syl | |- ( ( R |` A ) e. V -> U_ x e. A [ x ] R = U. { y | E. x e. A y = [ x ] R } ) |
| 5 | 4 | eqcomd | |- ( ( R |` A ) e. V -> U. { y | E. x e. A y = [ x ] R } = U_ x e. A [ x ] R ) |
| 6 | df-qs | |- ( A /. R ) = { y | E. x e. A y = [ x ] R } |
|
| 7 | 6 | unieqi | |- U. ( A /. R ) = U. { y | E. x e. A y = [ x ] R } |
| 8 | df-ec | |- [ x ] R = ( R " { x } ) |
|
| 9 | 8 | a1i | |- ( x e. A -> [ x ] R = ( R " { x } ) ) |
| 10 | 9 | iuneq2i | |- U_ x e. A [ x ] R = U_ x e. A ( R " { x } ) |
| 11 | imaiun | |- ( R " U_ x e. A { x } ) = U_ x e. A ( R " { x } ) |
|
| 12 | iunid | |- U_ x e. A { x } = A |
|
| 13 | 12 | imaeq2i | |- ( R " U_ x e. A { x } ) = ( R " A ) |
| 14 | 10 11 13 | 3eqtr2ri | |- ( R " A ) = U_ x e. A [ x ] R |
| 15 | 5 7 14 | 3eqtr4g | |- ( ( R |` A ) e. V -> U. ( A /. R ) = ( R " A ) ) |