This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the union of two classes. Definition 5.6 of TakeutiZaring p. 16. For example, ( { 1 , 3 } u. { 1 , 8 } ) = { 1 , 3 , 8 } ( ex-un ). Contrast this operation with difference ( A \ B ) ( df-dif ) and intersection ( A i^i B ) ( df-in ). For an alternate definition in terms of class difference, requiring no dummy variables, see dfun2 . For union defined in terms of intersection, see dfun3 . (Contributed by NM, 23-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-un | ⊢ ( 𝐴 ∪ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cB | ⊢ 𝐵 | |
| 2 | 0 1 | cun | ⊢ ( 𝐴 ∪ 𝐵 ) |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 3 | cv | ⊢ 𝑥 |
| 5 | 4 0 | wcel | ⊢ 𝑥 ∈ 𝐴 |
| 6 | 4 1 | wcel | ⊢ 𝑥 ∈ 𝐵 |
| 7 | 5 6 | wo | ⊢ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) |
| 8 | 7 3 | cab | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) } |
| 9 | 2 8 | wceq | ⊢ ( 𝐴 ∪ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) } |