This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin . (Contributed by FL, 25-May-2007) (Proof shortened by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uniinqs.1 | ⊢ 𝑅 Er 𝑋 | |
| Assertion | uniinqs | ⊢ ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) → ∪ ( 𝐵 ∩ 𝐶 ) = ( ∪ 𝐵 ∩ ∪ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniinqs.1 | ⊢ 𝑅 Er 𝑋 | |
| 2 | uniin | ⊢ ∪ ( 𝐵 ∩ 𝐶 ) ⊆ ( ∪ 𝐵 ∩ ∪ 𝐶 ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) → ∪ ( 𝐵 ∩ 𝐶 ) ⊆ ( ∪ 𝐵 ∩ ∪ 𝐶 ) ) |
| 4 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 ) | |
| 5 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐶 ↔ ∃ 𝑐 ∈ 𝐶 𝑥 ∈ 𝑐 ) | |
| 6 | 4 5 | anbi12i | ⊢ ( ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑥 ∈ ∪ 𝐶 ) ↔ ( ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 ∧ ∃ 𝑐 ∈ 𝐶 𝑥 ∈ 𝑐 ) ) |
| 7 | elin | ⊢ ( 𝑥 ∈ ( ∪ 𝐵 ∩ ∪ 𝐶 ) ↔ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑥 ∈ ∪ 𝐶 ) ) | |
| 8 | reeanv | ⊢ ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐶 ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ↔ ( ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 ∧ ∃ 𝑐 ∈ 𝐶 𝑥 ∈ 𝑐 ) ) | |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( 𝑥 ∈ ( ∪ 𝐵 ∩ ∪ 𝐶 ) ↔ ∃ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐶 ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) |
| 10 | simp3l | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝑥 ∈ 𝑏 ) | |
| 11 | simp2l | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝑏 ∈ 𝐵 ) | |
| 12 | inelcm | ⊢ ( ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) → ( 𝑏 ∩ 𝑐 ) ≠ ∅ ) | |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → ( 𝑏 ∩ 𝑐 ) ≠ ∅ ) |
| 14 | 1 | a1i | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝑅 Er 𝑋 ) |
| 15 | simp1l | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝐵 ⊆ ( 𝐴 / 𝑅 ) ) | |
| 16 | 15 11 | sseldd | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝑏 ∈ ( 𝐴 / 𝑅 ) ) |
| 17 | simp1r | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) | |
| 18 | simp2r | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝑐 ∈ 𝐶 ) | |
| 19 | 17 18 | sseldd | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝑐 ∈ ( 𝐴 / 𝑅 ) ) |
| 20 | 14 16 19 | qsdisj | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → ( 𝑏 = 𝑐 ∨ ( 𝑏 ∩ 𝑐 ) = ∅ ) ) |
| 21 | 20 | ord | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → ( ¬ 𝑏 = 𝑐 → ( 𝑏 ∩ 𝑐 ) = ∅ ) ) |
| 22 | 21 | necon1ad | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → ( ( 𝑏 ∩ 𝑐 ) ≠ ∅ → 𝑏 = 𝑐 ) ) |
| 23 | 13 22 | mpd | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝑏 = 𝑐 ) |
| 24 | 23 18 | eqeltrd | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝑏 ∈ 𝐶 ) |
| 25 | 11 24 | elind | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝑏 ∈ ( 𝐵 ∩ 𝐶 ) ) |
| 26 | elunii | ⊢ ( ( 𝑥 ∈ 𝑏 ∧ 𝑏 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑥 ∈ ∪ ( 𝐵 ∩ 𝐶 ) ) | |
| 27 | 10 25 26 | syl2anc | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) ) → 𝑥 ∈ ∪ ( 𝐵 ∩ 𝐶 ) ) |
| 28 | 27 | 3expia | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) → 𝑥 ∈ ∪ ( 𝐵 ∩ 𝐶 ) ) ) |
| 29 | 28 | rexlimdvva | ⊢ ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) → ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐶 ( 𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 ) → 𝑥 ∈ ∪ ( 𝐵 ∩ 𝐶 ) ) ) |
| 30 | 9 29 | biimtrid | ⊢ ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) → ( 𝑥 ∈ ( ∪ 𝐵 ∩ ∪ 𝐶 ) → 𝑥 ∈ ∪ ( 𝐵 ∩ 𝐶 ) ) ) |
| 31 | 30 | ssrdv | ⊢ ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) → ( ∪ 𝐵 ∩ ∪ 𝐶 ) ⊆ ∪ ( 𝐵 ∩ 𝐶 ) ) |
| 32 | 3 31 | eqssd | ⊢ ( ( 𝐵 ⊆ ( 𝐴 / 𝑅 ) ∧ 𝐶 ⊆ ( 𝐴 / 𝑅 ) ) → ∪ ( 𝐵 ∩ 𝐶 ) = ( ∪ 𝐵 ∩ ∪ 𝐶 ) ) |