This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Axiom of Union using the standard abbreviation for union. Given any set x , its union y exists. (Contributed by NM, 4-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniex2 | ⊢ ∃ 𝑦 𝑦 = ∪ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-un | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) | |
| 2 | eluni | ⊢ ( 𝑧 ∈ ∪ 𝑥 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦 ) ↔ ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 6 | 1 5 | mpbir | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦 ) |
| 7 | 6 | sepexi | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥 ) |
| 8 | dfcleq | ⊢ ( 𝑦 = ∪ 𝑥 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥 ) ) | |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 𝑦 = ∪ 𝑥 ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥 ) ) |
| 10 | 7 9 | mpbir | ⊢ ∃ 𝑦 𝑦 = ∪ 𝑥 |